北京大学学报(医学版) ›› 2018, Vol. 50 ›› Issue (6): 1120-1124. doi: 10.19723/j.issn.1671-167X.2018.06.033

• 综述 • 上一篇    

免疫代谢与系统性红斑狼疮

肖榆冰,郭慕瑶,左晓霞()   

  1. 中南大学湘雅医院风湿免疫科, 长沙 410008
  • 收稿日期:2018-07-09 出版日期:2018-12-18 发布日期:2018-12-18
  • 通讯作者: 左晓霞 E-mail:susanzuo@csu.edu.cn

Immunometabolism and systemic lupus erythematosus

Yu-bing XIAO,Mu-yao GUO,Xiao-xia ZUO()   

  1. Department of Rheumatology and Immunology,Xiangya Hospital,Central South University,Changsha 410008,China
  • Received:2018-07-09 Online:2018-12-18 Published:2018-12-18
  • Contact: Xiao-xia ZUO E-mail:susanzuo@csu.edu.cn

摘要:

关键词: 系统性红斑狼疮, 免疫代谢, CD4 +T淋巴细胞

Abstract:

Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease,characterized by production of pathogenic autoantibodies and wide involvement of multiple systems. Damageofimmune tolerance and imbalance of immune homeostasis lead to the production of autoantibodies and the injuries of multiple organs and systems. In recent years,plenty of studies have identified that immunometabolism affects survival status of certain cells,also cell activation,differentiation and effector functions. Conversely,immune cells with different functions or differentiational status upregulate specific me-tabolic pathways to maintain their identities. In response to outer stimulations,naive immune cells dif-ferentiate into activated cells,accompanied with a series of immunometabolism changes. Therefore,abnormal immunometabolism can induce global imbalance of immune homeostasis,which further results in the initiation and development of autoimmune diseases,including SLE. Multiple abnormalities of immunometabolism have been found in patients with SLE or mouse models of lupus. Immune cells involved in the development of SLE,such as T cells,B cells,dendritic cells and macrophages present various metabolic abnormalities and pathological phenotypes. Among these cells,CD4 + T cells play predominant roles in the pathogenesis of SLE. Lots of studies demonstrated that CD4 + T cells and their subsets were in abnormal immunometabolic status,which further resulted in the development of SLE. In CD4 + T cells from patients with SLE or mouse models of lupus,both levels of glycolysis and oxidative phosphorylation are significantly higher compared with healthy controls. However,mitochondrial abnormalities,decreased ATP production and increased level of oxidative stress also have been found in these cells,which play important roles in the production of reactive oxygen intermediates and autoantibodies. Aggregated lipids rafts and increased synthesis of glycosphingolipid and cholesterol also have been observed in the CD4 + T cells from patients with SLE,leading to the abnormally elevated TCR signaling. Moreover,mechanistic target of rapamycin (mTOR) signaling is activated in the CD4 + T cells from both patients with SLE or mouse models of lupus and participate in the metabolic abnormalities of pathological CD4 + T cells. Progressive understanding of immunometabolism give us new insights of the pathogenesis of SLE and provide us with more therapeutic targets in the treatment of SLE.

Key words: Lupus erythematosus, systemic, Immunometabolism, CD4 + T lymphocytes

中图分类号: 

  • R593.24
[1] Liu Z, Davidson A . Taming lupus:a new understanding of pathogenesis is leading to clinical advances[J]. Nat Med, 2012,18(6):871-882.
doi: 10.1038/nm.2752 pmid: 3607103
[2] Ruiz-Irastorza G, Khamashta MA, Castellino G , et al. Systemic lupus erythematosus[J]. Lancet, 2001,357(9261):1027-1032.
doi: 10.1016/S0140-6736(00)04239-2
[3] O’Neill LA, Kishton RJ , RathmellJ. A guide to immunometabolism for immunologists[J]. Nat Rev Immunol, 2016,16(9):553-565.
doi: 10.1038/nri.2016.70
[4] Wang RN, Dillon CP, Shi LZ , et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation[J]. Immunity, 2011,35(6):871-882.
doi: 10.1016/j.immuni.2011.09.021 pmid: 3248798
[5] Buck MD , O’Sullivan D, Klein GR, et al. Mitochondrial dyna-mics controls T cell fate through metabolic programming[J]. Cell, 2016,166(1):63-76.
doi: 10.1016/j.cell.2016.05.035 pmid: 27293185
[6] Rhoads JP, Major AS, Rathmell JC . Fine tuning of immuno-metabolism for the treatment of rheumatic diseases[J]. Nat Rev Rheumatol, 2017,13(5):313-320.
doi: 10.1038/nrrheum.2017.54 pmid: 28381829
[7] Frauwirth KA, Riley JL, Harris MH , et al. The CD28 signaling pathway regulates glucose metabolism[J]. Immunity, 2002,16(6):769-777.
doi: 10.1016/S1074-7613(02)00323-0 pmid: 12121659
[8] Gerriets VA, Kishton RJ, Nichols AG , et al. Metabolic programming and PDHK1 control CD4 + T cell subsets and inflammation [J]. J Clin Invest, 2015,125(1):194-207.
doi: 10.1172/JCI76012 pmid: 25437876
[9] Jellusova J, Rickert RC . The PI3K pathway in B cell metabolism[J]. Crit Rev Biochem Mol Biol, 2016,51(5):359-378.
doi: 10.1080/10409238.2016.1215288 pmid: 27494162
[10] Cheng SC, Quintin J, Cramer RA , et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity[J]. Science, 2014,345(6204):1250684.
doi: 10.1126/science.1250684 pmid: 4226238
[11] Perl A . Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases[J]. Nat Rev Rheumatol, 2016,12(3):169-182.
doi: 10.1038/nrrheum.2015.172 pmid: 26698023
[12] Gerriets VA, Kishton RJ, Johnson M O , et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression[J]. Nat Immunol, 2016,17(12):1459-1466.
doi: 10.1038/ni.3577 pmid: 27695003
[13] Iwata T N, Ramirez JA, Tsang M , et al. Conditional disruption of raptor reveals an essential role for mTORC1 in B cell development, survival, and metabolism[J]. J Immunol, 2016,197(6):2250-2260.
doi: 10.4049/jimmunol.1600492 pmid: 5009877
[14] Freemerman AJ , JohnsonAR, Sacks GN, et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype[J]. J Biol Chem, 2014,289(11):7884-7896.
doi: 10.1074/jbc.M113.522037
[15] Tso TK, Huang HY, Chang CK , et al. Clinical evaluation of insulin resistance and beta-cell function by the homeostasis model assessment in patients with systemic lupus erythematosus[J]. Clin Rheumatol, 2004,23(5):416-420.
doi: 10.1007/s10067-004-0908-5 pmid: 15459813
[16] Gabriel CL, Smith PB, Mendez-Fernandez YV , et al. Autoimmune-mediated glucose intolerance in a mouse model of systemic lupus erythematosus[J]. Am J Physiol Endocrinol Metab, 2012,303(11):E1313-E1324.
doi: 10.1152/ajpendo.00665.2011 pmid: 23032686
[17] Yan B, Huang J, Zhang C , et al. Serum metabolomic profiling in patients with systemic lupus erythematosus by GC/MS[J]. Mod Rheumatol, 2016,26(6):914-922.
doi: 10.3109/14397595.2016.1158895 pmid: 26915395
[18] Yin YM, Choi SC, Xu Z , et al. Glucose oxidation is critical for CD4 + T cell activation in a mouse model of systemic lupus erythematosus [J]. J Immunol, 2016,196(1):80-90.
doi: 10.4049/jimmunol.1501537
[19] Yin YM, Choi SC, Xu Z , et al. Normalization of CD4 + T cell metabolism reverses lupus [J]. Sci Transl Med, 2015,7(274):218-274.
doi: 10.1126/scitranslmed.aaa0835 pmid: 25673763
[20] Wahl D R, Petersen B, Warner R , et al. Characterization of the metabolic phenotype of chronically activated lymphocytes[J]. Lupus, 2010,19(13):1492-1501.
doi: 10.1177/0961203310373109 pmid: 20647250
[21] Gergely PJ, Grossman C, Niland B , et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus[J]. Arthritis Rheum, 2002,46(1):175-190.
doi: 10.1002/1529-0131(200201)46:1<175::AID-ART10015>3.0.CO;2-H pmid: 11817589
[22] Doherty E, Oaks Z, Perl A . Increased mitochondrial electron transport chain activity at complex Ⅰ is regulated by N-acetylcysteine in lymphocytes of patients with systemic lupus erythematosus[J]. Antioxid Redox Signal, 2014,21(1):56-65.
doi: 10.1089/ars.2013.5702
[23] Perl A, Gergely PJ, Banki K . Mitochondrial dysfunction in T cells of patients with systemic lupus erythematosus[J]. Int Rev Immunol, 2004,23(3/4):293-313.
doi: 10.1080/08830180490452576 pmid: 15204090
[24] Perl A, Hanczko R, Telarico T , et al. Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase[J]. Trends Mol Med, 2011,17(7):395-403.
doi: 10.1016/j.molmed.2011.01.014 pmid: 3116035
[25] Tsokos GC . Systemic lupus erythematosus[J]. N Engl J Med, 2011,365(22):2110-2121.
doi: 10.1056/NEJMra1100359
[26] Perry DJ, Yin YM, Telarico T , et al. Murine lupus susceptibility locus Sle1c2 mediates CD4 + T cell activation and maps to estrogen-related receptor gamma [J]. J Immunol, 2012,189(2):793-803.
doi: 10.4049/jimmunol.1200411 pmid: 3392454
[27] Huss JM, Garbacz WG, Xie W . Constitutive activities of estrogen-related receptors: transcriptional regulation of metabolism by the ERR pathways in health and disease[J]. Biochim Biophys Acta, 2015,1852(9):1912-1927.
doi: 10.1016/j.bbadis.2015.06.016 pmid: 26115970
[28] Vyshkina T, Sylvester A, Sadiq S , et al. Association of common mitochondrial DNA variants with multiple sclerosis and systemic lupus erythematosus[J]. Clin Immunol, 2008,129(1):31-35.
doi: 10.1016/j.clim.2008.07.011 pmid: 2567049
[29] Jacobs SR, Herman CE, Maciver NJ , et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways[J]. J Immunol, 2008,180(7):4476-4486.
doi: 10.4049/jimmunol.180.7.4476 pmid: 18354169
[30] Macintyre AN, Gerriets VA, Nichols AG , et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function[J]. Cell Metab, 2014,20(1):61-72.
doi: 10.1016/j.cmet.2014.05.004 pmid: 24930970
[31] Sobel ES, Brusko TM, Butfiloski EJ , et al. Defective response of CD4 + T cells to retinoic acid and TGFbeta in systemic lupus erythematosus [J]. Arthritis Res Ther, 2011,13(3):R106.
doi: 10.1186/ar3387 pmid: 3218921
[32] Morel L, Croker BP, Blenman KR , et al. Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains[J]. Proc Natl Acad Sci USA, 2000,97(12):6670-6675.
doi: 10.1073/pnas.97.12.6670 pmid: 10841565
[33] Morel L . Immunometabolism in systemic lupus erythematosus[J]. Nat Rev Rheumatol, 2017,13(5):280-290.
doi: 10.1038/nrrheum.2017.43 pmid: 28360423
[34] Perl A, Hanczko R, Lai ZW , et al. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin[J]. Metabolomics, 2015,11(5):1157-1174.
doi: 10.1007/s11306-015-0772-0 pmid: 4559110
[35] Krishnan S, Nambiar MP, Warke VG , et al. Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus[J]. J Immunol, 2004,172(12):7821-7831.
doi: 10.4049/jimmunol.172.12.7821 pmid: 15187166
[36] McDonald G, Deepak S, Miguel L , et al. Normalizing glycosphingolipids restores function in CD4 + T cells from lupus patients [J]. J Clin Invest, 2014,124(2):712-724.
doi: 10.1172/JCI69571
[37] Deng GM, Tsokos GC . Cholera toxin B accelerates disease progression in lupus-prone mice by promoting lipid raft aggregation[J]. J Immunol, 2008,181(6):4019-4026.
doi: 10.1016/j.jpedsurg.2008.12.030 pmid: 2556981
[38] Cui G, Qin X, Wu L , et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation[J]. J Clin Invest, 2011,121(2):658-670.
doi: 10.1172/JCI42974 pmid: 3026720
[39] Jeon JY, Nam JY, Kim HA , et al. Liver X receptors alpha gene (NR1H3) promoter polymorphisms are associated with systemic lupus erythematosus in Koreans[J]. Arthritis Res Ther, 2014,16(3):R112.
doi: 10.1186/ar4563 pmid: 4095571
[40] Ramiscal RR, Parish IA, Lee-Young RS , et al. Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation[J]. Elife, 2015,4:e08698.
doi: 10.7554/eLife.08698 pmid: 4716841
[41] Pratama A, Srivastava M, Williams NJ , et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres[J]. Nat Commun, 2015,6:6436.
doi: 10.1038/ncomms7436
[42] Fernandez DR, Telarico T, Bonilla E , et al. Activation of mammalian target of rapamycin controls the loss of TCRzeta in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation[J]. J Immunol, 2009,182(4):2063-2073.
doi: 10.4049/jimmunol.0803600 pmid: 19201859
[43] Lai ZW, Borsuk R, Shadakshari A , et al. Mechanistic target of rapamycin activation triggers IL-4 production and necrotic death of double-negative T cells in patients with systemic lupus erythematosus[J]. J Immunol, 2013,191(5):2236-2246.
doi: 10.4049/jimmunol.1301005 pmid: 23913957
[44] Kato H, Perl A . Mechanistic target of rapamycin complex 1 expands Th17 and IL-4 + CD4 -CD8 - double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus [J]. J Immunol, 2014,192(9):4134-4144.
doi: 10.4049/jimmunol.1301859 pmid: 24683191
[45] Corcoran SE , O’Neill LA. HIF1alpha and metabolic reprogramming in inflammation[J]. J Clin Invest, 2016,126(10):3699-3707.
doi: 10.1172/JCI84431 pmid: 27571407
[1] 邹健梅,武丽君,罗采南,石亚妹,吴雪. 血清25-羟维生素D与系统性红斑狼疮活动的关系[J]. 北京大学学报(医学版), 2021, 53(5): 938-941.
[2] 夏芳芳,鲁芙爱,吕慧敏,杨国安,刘媛. 系统性红斑狼疮伴间质性肺炎的临床特点及相关因素分析[J]. 北京大学学报(医学版), 2021, 53(2): 266-272.
[3] 耿研,李伯睿,张卓莉. 系统性红斑狼疮患者有症状关节病变的肌肉骨骼超声特点[J]. 北京大学学报(医学版), 2020, 52(1): 163-168.
[4] 王玉华,张国华,张令令,罗俊丽,高兰. 系统性红斑狼疮合并自发性肾上腺出血1例[J]. 北京大学学报(医学版), 2019, 51(6): 1178-1181.
[5] 李英妮,相晓红,赵静,李云,孙峰,王红彦,贾汝琳,胡凡磊. 抗类瓜氨酸化抗体在系统性红斑狼疮中的意义[J]. 北京大学学报(医学版), 2019, 51(6): 1019-1024.
[6] 杨帆,周云杉,贾园. 系统性红斑狼疮合并获得性血友病A 1例[J]. 北京大学学报(医学版), 2018, 50(6): 1108-1111.
[7] 刘爽,郭雨龙,杨静逸,王维,徐健. 间充质干细胞治疗系统性红斑狼疮有效性的meta分析[J]. 北京大学学报(医学版), 2018, 50(6): 1014-1021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张三. 中文标题测试[J]. 北京大学学报(医学版), 2010, 42(1): 1 -10 .
[2] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[3] 万有, , 韩济生, John E. Pintar. 孤啡肽基因敲除小鼠电针镇痛作用增强[J]. 北京大学学报(医学版), 2009, 41(3): 376 -379 .
[4] 张燕, 韩志慧, 钟延丰, 王盛兰, 李玲玲, 郑丹枫. 骨骼肌活组织检查病理诊断技术的改进及应用[J]. 北京大学学报(医学版), 2009, 41(4): 459 -462 .
[5] 林红, 王玉凤, 吴野平. 学校生活技能教育对小学三年级学生行为问题影响的对照研究[J]. 北京大学学报(医学版), 2007, 39(3): 319 -322 .
[6] 丰雷, 程嘉, 王玉凤. 注意缺陷多动障碍儿童的运动协调功能[J]. 北京大学学报(医学版), 2007, 39(3): 333 -336 .
[7] 李岳玲, 钱秋瑾, 王玉凤. 儿童注意缺陷多动障碍成人期预后及其预测因素[J]. 北京大学学报(医学版), 2007, 39(3): 337 -340 .
[8] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .
[9] 牟向东, 王广发, 刁小莉, 阙呈立. 肺黏膜相关淋巴组织型边缘区B细胞淋巴瘤一例[J]. 北京大学学报(医学版), 2007, 39(4): 346 -350 .
[10] 燕太强, 杨荣利, 郭卫, 沈丹华. 胫骨平滑肌肉瘤伴全身多发骨转移一例[J]. 北京大学学报(医学版), 2007, 39(4): 369 -373 .