北京大学学报(医学版) ›› 2019, Vol. 51 ›› Issue (1): 120-130. doi: 10.19723/j.issn.1671-167X.2019.01.022

• 论著 • 上一篇    下一篇

口腔用光固化三维打印精度评价方法的建立及应用效果

萧宁,孙玉春,赵一姣(),王勇()   

  1. 北京大学口腔医学院·口腔医院,口腔医学数字化研究中心,口腔修复教研室 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081
  • 收稿日期:2018-09-30 出版日期:2019-02-18 发布日期:2019-02-26
  • 通讯作者: 赵一姣,王勇 E-mail:kqcadcs@bjmu.edu.cn;kqcadc@bjmu.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFB1106903);国家重点研发计划(2018YFB1106901);宁夏自治区重点研发计划重点项目(2018BEG02012)

A method to evaluate the trueness of reconstructed dental models made with photo-curing 3D printing technologies

Ning XIAO,Yu-chun SUN,Yi-jiao ZHAO(),Yong WANG()   

  1. Center for Digital Dentistry, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2018-09-30 Online:2019-02-18 Published:2019-02-26
  • Contact: Yi-jiao ZHAO,Yong WANG E-mail:kqcadcs@bjmu.edu.cn;kqcadc@bjmu.edu.cn
  • Supported by:
    Supported by the National Key R&D Program of China(2018YFB1106903);Supported by the National Key R&D Program of China(2018YFB1106901);and the Key R&D Program of of Ningxia Hui Autonomous Region(2018BEG02012)

摘要:

目的:建立一种光固化三维打印技术精度评价用牙颌参考模型,并借助该模型建立光固化三维打印牙颌模型准确度的多维评价方法,获得客观评价结果。方法:参考既往文献报道的中国人群恒牙及恒牙列形态学研究的统计分析数据,在3ds Max 2018软件中设计一副以简化标准长方体组合模型模拟真实牙颌模型特征的牙颌参考模型。用三款不同打印原理的光固化三维打印机进行模型打印,分别是:Objet30 Pro打印机(PJ技术)、Projet 3510 HD Plus打印机(MJP技术)和Perfactory DDP打印机(DLP技术)。通过三维扫描打印模型,在Geomagic Studio 2012软件中基于扫描数据分析打印模型的整体3D偏差、特征面的平面度、平行度和垂直度误差。利用数显卡尺对打印模型各模拟牙冠近远中径、颊舌径和牙合龈向高度以及模拟牙列进行特征尺寸测量,分析打印层内和打印层高百分比误差。结果:在三维形态误差方面,Objet30 Pro打印模型的整体3D偏差最小,Projet 3510 HD Plus和Perfactory DDP打印模型分别在垂直度和平面度方面表现最优;在特征尺寸误差方面,Objet30 Pro打印模型的打印层内和打印层高误差综合表现最优。结论:本研究建立的光固化三维打印牙颌模型精度评价模型及配套方法,可以提供较客观、全面的评价结果,具有较好的通用性,可为三维打印临床应用提供参考和指导。

关键词: 三维打印, 牙模型, 摄影测量法, 可重复性结果

Abstract:

Objective: To establish a reference dental model used for trueness evaluation of photo-curing 3D printing technologies, and to establish a multidimensional trueness evaluation method based on the reference dental model, which can yield a comprehensive objective evaluating result. Methods: A reference dental model was designed in 3ds Max 2018 software based on the statistical analysis results of dental crown and dental arch of Chinese population in previous studies in order to simulate a real dental model. This model was made up of several simple geometrical configurations, which could minimize the manual measurement error. Physical models were fabricated using three types of photo-curing three-dimensional printers using different techniques: Objet30 Pro (PJ), Projet 3510 HD Plus (MJP), and Perfactory DDP (DLP). The models were scanned by a laser-scanning device and the files were exported in a stereolithography file format. In Geomagic Studio 2012, 3D shape deviations (including overall 3D deviation, flatness error, parallelism error and perpendicularity error) were measured by several commands using the data obtained from the scanning. With regard to the feature size of the simulated dental crown and dental arch, linear measurements (including mesiodistal diameter, buccolingual diameter, crown height of each simulated dental crown and feature size of dental arch) were recorded for selected landmarks using a digital caliper. The measurement results of feature sizes were used to analyze the occlusal plane percentage error and the occlusogingival direction percentage error. Results: For the 3D shape deviation, the results showed that the printed model made by the Objet30 Pro had the lowest overall 3D deviation, the model made by Projet 3510 HD Plus had the best perpendicularity accuracy and the model made by Perfactory DDP had the best flatness accuracy. In terms of the accuracy of the feature size, the model made by the Objet30 Pro was the most accurate in consideration of the results of the occlusal plane percentage error and the occlusogingival direction percentage error. Conclusion: The reference dental model and the trueness evaluation method using this model is universally applicable in evaluating the trueness of photo-curing three-dimensional printed dental model and can provide a comprehensive objective evaluating result, which can serve as a reference for the clinical use of photo-curing 3D printing technology.

Key words: Three-dimensional printing, Dental models, Photogrammetry, Reproducibility of results

中图分类号: 

  • R783.1

图1

研究设计流程图"

图2

上颌参考模型尺寸"

图3

下颌参考模型尺寸"

表1

牙颌参考模型各模拟牙冠尺寸"

Items Maxillary model Mandibular model
Mesiodistal diameter Buccolingual diameter Crown height Mesiodistal diameter Buccolingual diameter Crown height
Central incisor/mm 8 7 10 5 6 8
Lateral incisor/mm 7 6 9 6 6 8
Canine/mm 8 8 11 7 7 8
First premolar/mm 7 9 10 7 8 7
Second premolar/mm 7 9 10 7 8 7
First molar/mm 10 11 8 11 10 10
Second molar/mm 9 11 5 11 10 12

图4

牙颌参考模型打印时的摆放方向 (底座平面平行于打印机成型底盘、牙合龈向与底盘垂直)"

图5

在Geomagic Studio 2012软件中使用“特征平面拟合”功能得到各个平面"

图6

使用尖爪数显卡尺测量打印模型的模拟牙冠特征尺寸"

图7

打印模型模拟牙列特征尺寸"

图8

Objet30 Pro打印参考模型的3D偏差分析色阶图"

图9

Projet 3510 HD Plus打印参考模型的3D偏差分析色阶图"

图10

Perfactory DDP打印参考模型的3D偏差分析色阶图"

表2

3D打印牙颌参考模型的平面度、平行度和垂直度误差"

Items Objet30 Pro, x?±s Projet 3510 HD Plus, x?±s Perfactory DDP, x?±s
Max_M Man_M OV Max_M Man_M OV Max_M Man_M OV
Flatness error/mm 0.178±0.050 0.203±0.065 0.190±0.059 0.085±0.029 0.077±0.017 0.081±0.024 0.071±0.019 0.076±0.025 0.074±0.023
Parallelism error/(°) 0.097±0.043 0.177±0.066 0.138±0.068 0.164±0.079 0.118±0.056 0.141±0.071 0.648±0.126 0.220±0.096 0.434±0.244
Perpendicularity error/(°) 89.674±0.222 89.796±0.131 89.735±0.191 89.924±0.050 89.886±0.083 89.905±0.070 89.319±0.227 89.724±0.122 89.522±0.273

表3

3D打印牙颌参考模型的水平向和垂直向平面度误差"

Group Flatness errors of horizontal planes/mm Flatness errors of vertical planes/mm
Objet30 Pro 0.250 0.161
Projet 3510 HD Plus 0.081 0.081
Perfactory DDP 0.056 0.083

表4

3D打印牙颌参考模型的层内、层高尺寸误差"

Items Objet30 Pro, x?±s Projet 3510 HD Plus, x?±s Perfactory DDP, x?±s
Max_M Man_M OV Max_M Man_M OV Max_M Man_M OV
Occlusal plane error/% 0.09±0.36 -0.05±0.34 0.02±0.36 -0.39±0.24 -0.03±0.24 -0.21±0.30 0.27±0.34 0.18±0.39 0.23±0.36
Occlusogingival direction error/% -0.05±0.08 -0.07±0.10 -0.06±0.09 -0.33±0.10 -0.22±0.15 -0.27±0.14 0.05±0.10 -0.17±0.10 -0.06±0.15
[1] Bell A, Ayoub AF, Siebert P . Assessment of the accuracy of a three-dimensionalimaging system for archiving dental study models[J]. J Orthod, 2003,30(3):219-223.
doi: 10.1093/ortho/30.3.219 pmid: 14530419
[2] 雷东辉, 杨建军, 安世昌 , 等. 四种超硬石膏模型精度及抗弯强度的比较[J]. 中国组织工程研究与临床康复, 2011,15(21):3979-3982.
doi: 10.3969/j.issn.1673-8225.2011.21.043
[3] Santoro M, Galkin S, Teredesai M , et al. Comparison of measurements made on digital and plaster models[J]. Am J Orthod Den-tofacial Orthop, 2003,124(1):101-105.
doi: 10.1016/S0889-5406(03)00152-5 pmid: 12867904
[4] 杨慧芳, 赵建江, 王勇 . 3D打印技术在口腔医学领域中的应用[J]. 中国医疗设备, 2015,30(5):63-65.
doi: 10.3969/j.issn.1674-1633.2015.05.019
[5] Dawood A, Marti MB, Sauret-Jackson V , et al. 3D printing in dentistry[J]. Br Dent J, 2015,219(11):521-529.
doi: 10.1038/sj.bdj.2015.914
[6] Barazanchi A, Li KC, Al-Amleh B , et al. Additive technology: update on current materials and applications in dentistry[J]. J Prosthodont, 2017,26(2):156-163.
doi: 10.1111/jopr.12510 pmid: 27662423
[7] 孙玉春, 李榕, 周永胜 , 等. 三维打印在口腔修复领域中的应用[J]. 中华口腔医学杂志, 2017,52(6):381-385.
doi: 10.3760/cma.j.issn.1002-0098.2017.06.013
[8] 王惠芸 . 我国人牙的测量和统计[J]. 中华口腔科杂志, 1959,3(7):149-155.
[9] 翁希里, 于世宾, 赵守亮 , 等. 关中地区1000个汉族人恒牙解剖形态测量[J]. 牙体牙髓牙周病学杂志, 2007,17(2):75-77.
doi: 10.3969/j.issn.1005-2593.2007.02.004
[10] 涂玲, 刘良奎, 胡延佳 . 湖南地区正常恒牙牙合牙及牙弓的测量研究[J]. 中国现代医学杂志, 2003,13(24):62-64.
doi: 10.3969/j.issn.1005-8982.2003.24.019
[11] 彭惠, 卢海燕, 王昕 . 汉族青年恒牙牙冠的测量研究[J]. 现代口腔医学杂志, 2003,17(1):57-59.
doi: 10.3969/j.issn.1003-7632.2003.01.020
[12] 于跃, 许天民 . Spee曲线相关研究的回顾[J]. 中华口腔正畸学杂志, 2013,20(4):214-217.
doi: 10.3760/cma.j.issn.1674-5760.2013.04.008
[13] Kasparova M, Grafova L, Dvorak P , et al. Possibility of reconstruction of dental plaster cast from 3D digital study models[J]. Biomed Eng Online, 2013,12:49.
doi: 10.1186/1475-925X-12-49 pmid: 23721330
[14] Rebong RE, Stewart KT, Utreja A , et al. Accuracy of three-dimensional dental resin models created by fused deposition mo-deling, stereolithography, and Polyjet prototype technologies: A comparative study[J]. Angle Orthod, 2018,88(3):363-369.
doi: 10.2319/071117-460.1 pmid: 29509023
[15] Keating AP, Knox J, Bibb R , et al. A comparison of plaster, digital and reconstructed study model accuracy[J]. J Orthod, 2008,35(3):191-201.
doi: 10.1179/146531207225022626
[16] Hazeveld A, Huddleston SJ, Ren Y . Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques[J]. Am J Orthod Dentofacial Orthop, 2014,145(1):108-115.
doi: 10.1016/j.ajodo.2013.05.011 pmid: 24373661
[17] Saleh WK, Ariffin E, Sherriff M , et al. Accuracy and reprodu-cibility of linear measurements of resin, plaster, digital and printed study-models[J]. J Orthod, 2015,42(4):301-306.
doi: 10.1179/1465313315Y.0000000016 pmid: 26216658
[18] Hwang YC, Park YS, Kim HK , et al. The evaluation of working casts prepared from digital impressions[J]. Oper Dent, 2013,38(6):655-662.
doi: 10.2341/12-352-l pmid: 23570301
[19] Wan HW, Yusoff Y, Mardi NA . Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding[J]. Am J Orthod Dentofacial Orthop, 2017,151(1):209-218.
doi: 10.1016/j.ajodo.2016.08.019
[20] 曾飞煌, 徐远志, 房莉 , 等. 应用数字化技术和快速成型技术制作牙颌模型的准确性评价[J]. 上海口腔医学, 2012,21(1):53-56.
[21] Camardella LT, de Vasconcellos VO, Breuning H . Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases[J]. Am J Orthod Dentofacial Orthop, 2017,151(6):1178-1187.
doi: 10.1016/j.ajodo.2017.03.012 pmid: 28554463
[22] Cuperus AM, Harms MC, Rangel FA , et al. Dental models made with an intraoral scanner: a validation study[J]. Am J Orthod Dentofacial Orthop, 2012,142(3):308-313.
doi: 10.1016/j.ajodo.2012.03.031 pmid: 22920696
[23] Murugesan K, Anandapandian PA, Sharma SK , et al. Comparative evaluation of dimension and surface detail accuracy of models produced by three different rapid prototype techniques[J]. J In-dian Prosthodont Soc, 2012,12(1):16-20.
doi: 10.1007/s13191-011-0103-8 pmid: 3332309
[24] Kim SY, Shin YS, Jung HD , et al. Precision and trueness of dental models manufactured with different 3-dimensional printing techniques[J]. Am J Orthod Dentofacial Orthop, 2018,153(1):144-153.
doi: 10.1016/j.ajodo.2017.05.025 pmid: 29287640
[25] Dietrich CA, Ender A, Baumgartner S , et al. A validation study of reconstructed rapid prototyping models produced by two techno-logies[J]. Angle Orthod, 2017,87(5):782-787.
doi: 10.2319/01091-727.1 pmid: 28459285
[26] Jin SJ, Jeong ID, Kim JH , et al. Accuracy (trueness and precision) of dental models fabricated using additive manufacturing methods[J]. Int J Comput Dent, 2018,21(2):107-113.
[27] Ishida Y, Miyasaka T . Dimensional accuracy of dental casting patterns created by 3D printers[J]. Dent Mater J, 2016,35(2):250-256.
doi: 10.4012/dmj.2015-278 pmid: 27041015
[28] 方浩博, 陈继民 . 基于数字光处理技术的3D打印技术[J]. 北京工业大学学报, 2015,41(12):1775-1782.
doi: 10.11936/bjutxb2015070050
[29] 何岷洪, 宋坤, 莫宏斌 , 等. 3D打印光敏树脂的研究进展[J]. 功能高分子学报, 2015,28(1):102-108.
[30] Stansbury JW, Idacavage MJ . 3D printing with polymers: Challenges amongexpanding options and opportunities[J]. Dent Mater, 2016,32(1):54-64.
doi: 10.1016/j.dental.2015.09.018 pmid: 26494268
[31] Snyder TJ, Andrews M, Weislogel M , et al. 3D systems’ techno-logy overview and new applications in manufacturing, engineering, science, and education[J]. 3D Print Addit Manuf, 2011,1(3):169-176.
doi: 10.1089/3dp.2014.1502 pmid: 28473997
[1] 刘思民,赵一姣,王晓燕,王祖华. 动态导航下不同深度环钻定位精确度的体外评价[J]. 北京大学学报(医学版), 2022, 54(1): 146-152.
[2] 徐啸翔,曹烨,赵一姣,贾璐,谢秋菲. 数字化个齿托盘制取下颌全牙列全冠预备体印模的体外评价[J]. 北京大学学报(医学版), 2021, 53(1): 54-61.
[3] 萧宁,孙玉春,赵一姣,王勇. 三种数字化分析算法测量咬合接触分布及面积的对比研究[J]. 北京大学学报(医学版), 2020, 52(1): 144-151.
[4] 戴帆帆,刘怡,许天民,陈贵. 探索成人正畸前后下颌三维数字化模型的重叠方法[J]. 北京大学学报(医学版), 2018, 50(2): 271-278.
[5] 叶红强,柳玉树,刘云松,宁静,赵一姣,周永胜. 口内数码摄影辅助构建三维彩色数字牙列模型[J]. 北京大学学报(医学版), 2016, 48(1): 138-142.
[6] 秦一飞, 许天民. 在数字化牙颌模型上确定平面的可重复性[J]. 北京大学学报(医学版), 2015, 47(3): 536-540.
[7] 胡攀攀, 于淼, 刘晓光, 陈仲强, 刘忠军. Lenke 1型青少年特发性脊柱侧弯脊柱-骨盆矢状位与冠状位参数的相关性[J]. 北京大学学报(医学版), 2015, 47(2): 248-252.
[8] 王宗琦, 王晓霞, 李自力, 伊彪, 梁成, 王兴. 3种缝合方法控制上颌Le Fort Ⅰ型截骨术后鼻翼宽度的效果比较[J]. 北京大学学报(医学版), 2015, 47(1): 104-108.
[9] 宋杨, 孙玉春, 赵一姣, 王勇, 吕培军. 牙颌模型三维扫描仪精度定量评价[J]. 北京大学学报(医学版), 2013, 45(1): 140-144.
[10] 郭惠杰, 岳林. 粪肠球菌在根管内定植模式的体外研究[J]. 北京大学学报(医学版), 2009, 41(6): 699-701.
[11] 赵一姣, 王勇, 吕培军. 一种基于数字化牙颌模型的三维咬合分析方法[J]. 北京大学学报(医学版), 2008, 40(1): 109-111.
[12] 王勇, 赵一姣, 吕培军, 李忠科. 一种牙尖交错位上下颌模型的扫描方法[J]. 北京大学学报(医学版), 2006, 38(3): 298-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张三. 中文标题测试[J]. 北京大学学报(医学版), 2010, 42(1): 1 -10 .
[2] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[3] 万有, , 韩济生, John E. Pintar. 孤啡肽基因敲除小鼠电针镇痛作用增强[J]. 北京大学学报(医学版), 2009, 41(3): 376 -379 .
[4] 张燕, 韩志慧, 钟延丰, 王盛兰, 李玲玲, 郑丹枫. 骨骼肌活组织检查病理诊断技术的改进及应用[J]. 北京大学学报(医学版), 2009, 41(4): 459 -462 .
[5] 赵奇, 薛世华, 刘志勇, 吴凌云. 同向施压测定自酸蚀与全酸蚀粘接系统粘接强度[J]. 北京大学学报(医学版), 2010, 42(1): 82 -84 .
[6] 林红, 王玉凤, 吴野平. 学校生活技能教育对小学三年级学生行为问题影响的对照研究[J]. 北京大学学报(医学版), 2007, 39(3): 319 -322 .
[7] 丰雷, 程嘉, 王玉凤. 注意缺陷多动障碍儿童的运动协调功能[J]. 北京大学学报(医学版), 2007, 39(3): 333 -336 .
[8] 李岳玲, 钱秋瑾, 王玉凤. 儿童注意缺陷多动障碍成人期预后及其预测因素[J]. 北京大学学报(医学版), 2007, 39(3): 337 -340 .
[9] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .
[10] 牟向东, 王广发, 刁小莉, 阙呈立. 肺黏膜相关淋巴组织型边缘区B细胞淋巴瘤一例[J]. 北京大学学报(医学版), 2007, 39(4): 346 -350 .