北京大学学报(医学版) ›› 2019, Vol. 51 ›› Issue (5): 973-976. doi: 10.19723/j.issn.1671-167X.2019.05.031

• 技术方法 • 上一篇    下一篇

机器人辅助三叉神经半月节的穿刺精度研究

朱建华,王晶,刘筱菁,郭传瑸()   

  1. 北京大学口腔医学院·口腔医院,口腔颌面外科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081
  • 收稿日期:2017-08-28 出版日期:2019-10-18 发布日期:2019-10-23
  • 通讯作者: 郭传瑸 E-mail:guodazuo@sina.com
  • 基金资助:
    国家高技术研究发展计划(863计划)(,2012AA041606和北京市科技计划Z141100002014003);北京市科技计划(Z141100002014003)

Accuracy analysis of robotic assistant needle placement for trigeminal gasserian ganglion

Jian-hua ZHU,Jing WANG,Xiao-jing LIU,Chuan-bin GUO()   

  1. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2017-08-28 Online:2019-10-18 Published:2019-10-23
  • Contact: Chuan-bin GUO E-mail:guodazuo@sina.com
  • Supported by:
    Supported by the National High Technology Research and Development Program of China (863 Program)(,2012AA041606和北京市科技计划Z141100002014003);the Beijing Science and Technology Project(Z141100002014003)

摘要:

目的:验证自主研发的穿刺机器人辅助三叉神经半月节穿刺的精确性及可行性。方法:使用仿真头颅模型作为研究对象,橡皮泥模拟软组织,术前对模型进行锥形束CT(cone beam CT, CBCT)扫描,将影像数据导入计算机的术前设计系统,分割卵圆孔作为目标点,选取“皮肤进针点”后生成穿刺路径。将模型固定于模拟手术床的实验台,使用点配准的方式完成系统配准,发送穿刺路径数据至机器人控制器,经过医生确认穿刺路径后,在导航引导下机器人系统自动完成穿刺手术操作。穿刺完成后导航仪获取针尖即刻位置坐标,通过配准矩阵转换,计算针尖点与设计靶点的几何距离对穿刺精度进行术中验证,将穿刺针从执行器末端松解,对模型进行CBCT扫描再次获取术后图像数据,将术前、术后头颅进行图像融合,选取术后图像中针尖坐标数据,经过配准矩阵转换,计算针尖点与设计靶点的几何距离进行术后精度验证。采用IBM SPSS Statistics 20统计软件,以配对t检验方法对术中导航验证精度与术后图像融合验证精度进行统计学分析。结果:20例穿刺手术均一次成功穿过卵圆孔,术中导航验证平均穿刺误差为(0.56±0.07) mm,术后图像融合验证平均穿刺误差为(1.49±0.14) mm,差异有统计学意义(P<0.001)。结论:机器人辅助三叉神经半月节穿刺手术高效、可靠,导航精度是影响机器人辅助穿刺手术的重要因素。

关键词: 机器人, 手术, 计算机辅助, 三叉神经痛

Abstract:

Objective: To evaluate the accuracy and feasibility of a custom robot system guided by optical navigation for needle puncture on trigeminal gasserian ganglion. Methods: A synthetic human skull model was used, with plasticine placed around the skull base to imitate the human soft tissue. Cone beam CT (CBCT) scanning was performed before the operation. With image data transferred to the graphical user interface of the computer workstation, the oval foramen was selected as the target and the “skin entry point” was also determined by the surgeon on the surgical planning software. Thus the needle trajectory was eventually planned. The skull model was fixed firmly to the trial table with a head clamp and relative size of the trial table was the same as a standard operating table. Following point-based registration, the data were sent to the robot control unit. Only after the surgeon’s confirmation, the needle was automatically inserted into the intended target by the robot guided by optical navigation. When the procedure was completed, the instantaneous data of the needle tip orientation acquired by navigation system was sent back to the computer workstation for accuracy verification by calculating the geometric distance between the needle tip and the planning target after matrix transformation. Subsequently, after the needle had been released, CBCT scanning was also acquired to make image fusion of the preoperative skull and the postoperative skull. The data of the needle tip orientation was acquired on the postoperative image and the accuracy was re-verified by calculating the geometric distance between the needle tip and the planning target after matrix transformation. IBM SPSS Statistics 20 was used for statistical analysis and the paired t-test was used to compare the differences in the accuracy measured by the intraoperative navigation and postoperative image fusion. Results:All 20 interventions were successfully located in oval foramen at the first needle insertion. The mean deviation of the needle tip was (0.56±0.07) mm (measured by the navigation system) and (1.49±0.14) mm (measured by the image fusion), respectively (P<0.001). Conclusion: The experimental results show the robot system is efficient and reliable. The navigation accuracy is one of the most significant factors in robotic procedures.

Key words: Robotics, Surgery, computer-assisted, Trigeminal neuralgia

中图分类号: 

  • R745.11

图1

机器人系统 (A为光学导航仪,B为计算机工作站,C为机器人装置)"

图2

闭合回路控制"

图3

术前(银色)、术后(棕绿色)头颅图像融合 (紫色线型为设计路径,棕绿色线性物体为穿刺针)"

图4

针尖偏移误差"

[1] van Kleef M, van Genderen WE, Narouze S , et al. 1. Trigeminal neuralgia[J]. Pain Pract, 2009,9(4):252-259.
[2] 邵君飞, 王海秋, 姚建社 , 等. CAS-R-2型机器人导航下射频治疗三叉神经痛的基础与临床研究[J]. 临床神经外科杂志, 2006,3(2):70-72.
[3] Bale RJ, Laimer I, Martin A , et al. Frameless stereotactic cannulation of the foramen ovale for ablative treatment of trigeminal neuralgia[J]. Neurosurgery, 2006,59(2):394-401.
[4] Caversaccio M, Zulliger D, Bächler R , et al. Practical aspects for optimal registration (matching) on the lateral skull base with an optical frameless computer-aided pointer system[J]. Am J Otol, 2000,21(6):863-870.
[5] Bae KH, Lichti DD . A method for automated registration of unorganised point clouds[J]. ISPRS J Photogramm, 2008,63(1):36-54.
[6] 张杰, 孟箭, 庄乾伟 , 等. 三维CT引导下经卵圆孔穿刺射频治疗三叉神经痛[J]. 口腔颌面外科杂志, 2016,26(4):285-289.
[7] 卢光, 陶蔚, 朱宏伟 , 等. 神经导航引导经皮穿刺三叉神经半月节射频热凝治疗三叉神经痛的研究[J]. 临床神经外科杂志, 2013,10(6):341-343.
[8] Masamune K, Fichtinger G, Patriciu A , et al. System for robotically assisted percutaneous procedures with computed tomography guidance[J]. Comput Aided Surg, 2001,6(6):370-383.
[9] Aghayev E, Ebert LC, Christe A , et al. CT data-based navigation for post-mortem biopsy: a feasibility study[J]. J Forensic Leg Med, 2008,15(6):382-387.
[10] Penzkofer T, Isfort P, Bruners P , et al. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments[J]. Eur Radiol, 2010,20(11):2656-2662.
[11] Dogangil G, Davies BL, Rodriguez YBF . A review of medical robotics for minimally invasive soft tissue surgery[J]. Proc Inst Mech Eng H, 2010,224(5):653-679.
[12] Simone C, Okamura AM. Modeling of needle insertion forces for robot-assisted percutaneous therapy [C]// Proceedings of the 2002 IEEE International Conference on Robotics and Automation, ICRA 2002, Washington, DC, USA. IEEE, 2002: 2085-2091.
[13] Kataoka H, Washio T, Audette M, et al. A model for relations between needle deflection, force, and thickness on needle penetration [C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg, 2001: 966-974.
[14] Luebbers HT, Messmer P, Obwegeser JA , et al. Comparison of different registration methods for surgical navigation in cranio-maxillofacial surgery[J]. J Craniomaxillofac Surg, 2008,36(2):109-116.
[15] Raabe A, Krishnan R, Wolff R , et al. Laser surface scanning for patient registration in intracranial image-guided surgery[J]. Neurosurgery, 2002,50(4):802-803.
[16] Schlaier J, Warnat J, Brawanski A . Registration accuracy and practicability of laser-directed surface matching[J]. Comput Aided Surg, 2002,7(5):284-290.
[17] Bao N, Chen Y, Yue Y , et al. Fiducial markers configuration optimization in image-guided surgery[J]. Biomed Mater Eng, 2014,24(6):3361-3371.
[1] 白鹏,怀伟,夏天,杨钟玮,郭向阳,周方. 气管插管和喉罩在手术室与滑雪场雪道建立人工气道时间的比较[J]. 北京大学学报(医学版), 2022, 54(1): 166-169.
[2] 李怡,王丽瑜,刘晓强,周倜,吕季喆,谭建国. 不同材料及厚度椅旁CAD/CAM瓷贴面的边缘特征[J]. 北京大学学报(医学版), 2022, 54(1): 140-145.
[3] 邱淑婷,朱玉佳,王时敏,王飞龙,叶红强,赵一姣,刘云松,王勇,周永胜. 姿势微笑位口唇对称参考平面的数字化构建及初步应用验证[J]. 北京大学学报(医学版), 2022, 54(1): 193-199.
[4] 李伟浩,李伟,张学民,李清乐,焦洋,张韬,蒋京军,张小明. 去分支杂交手术和传统手术治疗胸腹主动脉瘤的结果比较[J]. 北京大学学报(医学版), 2022, 54(1): 177-181.
[5] 苏俊琪,宋扬,谢尚. 口腔鳞状细胞癌患者修复重建术后感染的病原学特征及感染风险预测模型的构建[J]. 北京大学学报(医学版), 2022, 54(1): 68-76.
[6] 庄金满,李天润,李选,栾景源,王昌明,冯琦琛,韩金涛. Rotarex经皮机械性血栓切除装置在急性下肢缺血中的应用[J]. 北京大学学报(医学版), 2021, 53(6): 1159-1162.
[7] 蒋艳芳,王健,王永健,刘佳,裴殷,刘晓鹏,敖英芳,马勇. 前交叉韧带翻修重建术后中长期临床疗效及影响因素[J]. 北京大学学报(医学版), 2021, 53(5): 857-863.
[8] 朱敬先,鲁胜楠,蒋艳芳,姜玲,王健全. 老年肩袖损伤手术患者术前肺功能的影响因素[J]. 北京大学学报(医学版), 2021, 53(5): 902-906.
[9] 刘承,马潞林. 前入路机器人辅助前列腺根治性切除术中改善排尿控制的经验[J]. 北京大学学报(医学版), 2021, 53(4): 635-639.
[10] 郝瀚,刘越,陈宇珂,司龙妹,张萌,范宇,张中元,唐琦,张雷,吴士良,宋毅,林健,赵峥,谌诚,虞巍,韩文科. 机器人辅助前列腺癌根治术后患者的控尿恢复时间[J]. 北京大学学报(医学版), 2021, 53(4): 697-703.
[11] 刘磊,秦艳春,王国良,张树栋,侯小飞,马潞林. 嗜铬细胞瘤和副神经节瘤二次手术策略[J]. 北京大学学报(医学版), 2021, 53(4): 793-797.
[12] 洪鹏,田晓军,赵小钰,杨飞龙,刘茁,陆敏,赵磊,马潞林. 肾移植术后双侧乳头状肾癌1例[J]. 北京大学学报(医学版), 2021, 53(4): 811-813.
[13] 林国中, 马长城, 王振宇, 谢京城, 刘彬, 陈晓东. 1~2硬膜外神经鞘瘤的显微微创治疗[J]. 北京大学学报(医学版), 2021, 53(3): 586-589.
[14] 李新飞, 彭意吉, 余霄腾, 熊盛炜, 程嗣达, 丁光璞, 杨昆霖, 唐琦, 米悦, 吴静云, 张鹏, 谢家馨, 郝瀚, 王鹤, 邱建星, 杨建, 李学松, 周利群. 肾部分切除术前CT三维可视化评估标准的初步探究[J]. 北京大学学报(医学版), 2021, 53(3): 613-622.
[15] 杨阳,肖锋,王进,宋波,李西慧,张师杰,何志嵩,张寰,尹玲. 同期手术治疗心脏病和非心脏疾病[J]. 北京大学学报(医学版), 2021, 53(2): 327-331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张三. 中文标题测试[J]. 北京大学学报(医学版), 2010, 42(1): 1 -10 .
[2] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[3] 万有, , 韩济生, John E. Pintar. 孤啡肽基因敲除小鼠电针镇痛作用增强[J]. 北京大学学报(医学版), 2009, 41(3): 376 -379 .
[4] 张燕, 韩志慧, 钟延丰, 王盛兰, 李玲玲, 郑丹枫. 骨骼肌活组织检查病理诊断技术的改进及应用[J]. 北京大学学报(医学版), 2009, 41(4): 459 -462 .
[5] 张安阳, 范田园. 运用响应曲面法优化核黄素磷酸钠海藻酸钙胃漂浮微球[J]. 北京大学学报(医学版), 2009, 41(6): 682 -686 .
[6] 赵奇, 薛世华, 刘志勇, 吴凌云. 同向施压测定自酸蚀与全酸蚀粘接系统粘接强度[J]. 北京大学学报(医学版), 2010, 42(1): 82 -84 .
[7] 林红, 王玉凤, 吴野平. 学校生活技能教育对小学三年级学生行为问题影响的对照研究[J]. 北京大学学报(医学版), 2007, 39(3): 319 -322 .
[8] 丰雷, 程嘉, 王玉凤. 注意缺陷多动障碍儿童的运动协调功能[J]. 北京大学学报(医学版), 2007, 39(3): 333 -336 .
[9] 李岳玲, 钱秋瑾, 王玉凤. 儿童注意缺陷多动障碍成人期预后及其预测因素[J]. 北京大学学报(医学版), 2007, 39(3): 337 -340 .
[10] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .