北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (5): 815-820. doi: 10.19723/j.issn.1671-167X.2020.05.004
王梦莹1,李文咏1,周仁1,王斯悦1,刘冬静1,郑鸿尘1,李静2,李楠3,周治波3,朱洪平3,吴涛1,∆(),胡永华1
Meng-ying WANG1,Wen-yong LI1,Ren ZHOU1,Si-yue WANG1,Dong-jing LIU1,Hong-chen ZHENG1,Jing LI2,Nan LI3,Zhi-bo ZHOU3,Hong-ping ZHU3,Tao WU1,∆(),Yong-hua HU1
摘要:
目的:利用全基因组关联研究(genome-wide association study,GWAS)数据,从基因-基因交互作用和基因-环境交互作用方面探索WNT代谢通路相关基因在中国人群非综合征型唇腭裂(non-syndromic oral clefts,NSOC)发生风险中的作用。方法:本研究样本来自“唇腭裂基因和交互作用的国际合作研究”项目在中国地区募集的806个非综合征型唇裂合并或不合并腭裂(non-syndromic cleft lip with or without cleft palate,NSCL/P)核心家系和202个非综合征型单纯腭裂(non-syndromic cleft palate,NSCP)核心家系。通过收集研究对象的DNA样本和问卷调查获得基因型数据和母亲孕期环境暴露信息,利用此GWAS数据,采用条件Logistic回归模型探讨基因-基因交互作用和基因-环境交互作用,由R软件中的trio软件包完成。经过Bonferroni多重检验校正后,统计学检验的显著性阈值均设为P<3.47×10-4。结果:经过数据质量控制后,NSCL/P核心家系和NSCP核心家系各纳入7个基因上的144个单核苷酸多态性(single nucleotide polymorphisms, SNPs)位点进入分析。在NSCL/P和NSCP家系中,分别有三对SNPs交互作用达到统计学显著性水平(P<3.47×10-4):rs7618735(WNT5A)与rs10848543(WNT5B),rs631948(WNT11)与rs556874(WNT5A)以及rs631948(WNT11)与rs472631(WNT5A);rs589149(WNT11)与rs4765834(WNT5B),rs1402704(WNT11)与rs358792(WNT5A)以及rs1402704(WNT11)与rs358793(WNT5A)。此外,基因-环境交互作用分析未发现显著结果。结论:未发现WNT代谢通路相关基因-环境交互作用在NSCL/P和NSCP发病风险中的作用,但WNT代谢通路相关基因可能通过基因-基因交互作用影响NSOC的发病风险。
中图分类号:
[1] |
Cooper ME, Ratay JS, Marazita ML. Asian oral-facial cleft birth prevalence[J]. Cleft Palate Craniofac J, 2006,43(5):580-589.
doi: 10.1597/05-167 pmid: 16986997 |
[2] |
Wang M, Yuan Y, Wang Z, et al. Prevalence of orofacial clefts among live births in China: A systematic review and meta-analysis[J]. Birth Defects Res, 2017,109(13):1011-1019.
pmid: 28635078 |
[3] |
Leslie EJ, Marazita ML. Genetics of cleft lip and cleft palate[J]. Am J Med Genet C Semin Med Genet, 2013,163C(4):246-258.
doi: 10.1002/ajmg.c.31381 pmid: 24124047 |
[4] |
Mangold E, Ludwig KU, Nothen MM, Breakthroughs in the gene-tics of orofacial clefting[J]. Trends Mol Med, 2011,17(12):725-733.
doi: 10.1016/j.molmed.2011.07.007 pmid: 21885341 |
[5] |
Beaty TH, Marazita ML, Leslie EJ. Genetic factors influencing risk to orofacial clefts: Today’s challenges and tomorrow’s opportunities[J]. F1000Res, 2016,5:2800.
doi: 10.12688/f1000research.9503.1 pmid: 27990279 |
[6] |
Leslie EJ, Carlson JC, Shaffer JR, et al. Association studies of low-frequency coding variants in nonsyndromic cleft lip with or without cleft palate[J]. Am J Med Genet A, 2017,173(6):1531-1538.
doi: 10.1002/ajmg.a.38210 pmid: 28425186 |
[7] |
Mani P, Jarrell A, Myers J, et al. Visualizing canonical Wnt signaling during mouse craniofacial development[J]. Dev Dyn, 2010,239(1):354-363.
doi: 10.1002/dvdy.22072 pmid: 19718763 |
[8] |
Lan Y, Ryan R, Zhang Z, et al. Expression of Wnt9b and activation of canonical Wnt signaling during midfacial morphogenesis in mice[J]. Dev Dyn, 2006,235(5):1448-1454.
doi: 10.1002/dvdy.20723 pmid: 16496313 |
[9] |
Chiquet BT, Blanton SH, Burt A, et al. Variation in WNT genes is associated with nonsyndromic cleft lip with or without cleft palate[J]. Hum Mol Genet, 2008,17(14):2212-2218.
doi: 10.1093/hmg/ddn121 pmid: 18413325 |
[10] |
Menezes R, Letra A, Kim AH, et al. Studies with Wnt genes and nonsyndromic cleft lip and palate[J]. Birth Defects Res A Clin Mol Teratol, 2010,88(11):995-1000.
doi: 10.1002/bdra.20720 pmid: 20890934 |
[11] | 刘小俊, 周小平, 崔毓贵, 等. WNT5A基因rs566926多态性与中国苏皖地区部分人群非综合征性唇腭裂的相关性[J]. 江苏医药, 2010,36(13):1495-1498. |
[12] |
Yao T, Yang L, Li PQ, et al. Association of Wnt3A gene variants with non-syndromic cleft lip with or without cleft palate in Chinese population[J]. Arch Oral Biol, 2011,56(1):73-78.
doi: 10.1016/j.archoralbio.2010.09.002 |
[13] |
Beaty TH, Murray JC, Marazita ML, et al. A genome-wide asso-ciation study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010,42(6):525-529.
doi: 10.1038/ng.580 pmid: 20436469 |
[14] |
Beaty TH, Ruczinski I, Murray JC, et al. Evidence for gene-environment interaction in a genome wide study of isolated, non-syndromic cleft palate[J]. Genet Epidemiol, 2011,35(6):469-478.
doi: 10.1002/gepi.20595 |
[15] |
Cordell HJ. Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in humans[J]. Hum Mol Genet, 2002,11(20):2463-2468.
doi: 10.1093/hmg/11.20.2463 pmid: 12351582 |
[16] |
Christensen K, Juel K, Herskind AM, et al. Long term follow up study of survival associated with cleft lip and palate at birth[J]. BMJ, 2004,328(7453):1405-1408.
doi: 10.1136/bmj.38106.559120.7C pmid: 15145797 |
[17] |
Zhu JL, Basso O, Hasle H, et al. Do parents of children with congenital malformations have a higher cancer risk? A nationwide study in Denmark[J]. Br J Cancer, 2002,87(5):524-528.
doi: 10.1038/sj.bjc.6600488 pmid: 12189550 |
[18] |
Mangold E, Ludwig KU, Birnbaum S, et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate[J]. Nat Genet, 2010,42(1):24-26.
doi: 10.1038/ng.506 pmid: 20023658 |
[19] |
Birnbaum S, Ludwig KU, Reutter H, et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24[J]. Nat Genet, 2009,41(4):473-477.
doi: 10.1038/ng.333 pmid: 19270707 |
[20] |
Grant SF, Wang K, Zhang H, et al. A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24[J]. J Pediatr, 2009,155(6):909-913.
doi: 10.1016/j.jpeds.2009.06.020 pmid: 19656524 |
[21] | Sun Y, Huang Y, Yin A, et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate[J]. Nat Commun, 2015(6):6414. |
[22] |
Leslie EJ, Carlson JC, Shaffer JR, et al. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13[J]. Hum Mol Genet, 2016,25(13):2862-2872.
doi: 10.1093/hmg/ddw104 pmid: 27033726 |
[23] | Yu Y, Zuo X, He M, et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic hete-rogeneity[J]. Nat Commun, 2017(8):14364. |
[24] |
Xiao Y, Taub MA, Ruczinski I, et al. Evidence for SNP-SNP interaction identified through targeted sequencing of cleft case-parent trios[J]. Genet Epidemiol, 2017,41(3):244-250.
doi: 10.1002/gepi.22023 pmid: 28019042 |
[25] |
Li Q, Kim Y, Suktitipat B, et al. Gene-gene interaction among Wnt genes for oral cleft in trios[J]. Genet Epidemiol, 2015,39(5):385-394.
doi: 10.1002/gepi.21888 pmid: 25663376 |
[26] |
Letra A, Fakhouri W, Fonseca RF, et al. Interaction between IRF6 and TGFA genes contribute to the risk of nonsyndromic cleft lip/palate[J]. PLoS One, 2012,7(9):e45441.
doi: 10.1371/journal.pone.0045441 pmid: 23029012 |
[27] | 张玉. TGFα、Wnt3基因多态性和环境因素的交互作用与非综合征型唇腭裂的关系研究[D]. 武汉: 华中科技大学, 2013. |
[28] | 俞辉明, 程宏宇, 房进. 环境暴露和FGF18、WNT5A基因多态性与NSCL/P的关系[J]. 广东医学, 2011,32(5):588-590. |
[1] | 李文咏,王梦莹,周仁,王斯悦,郑鸿尘,朱洪平,周治波,吴涛,王红,石冰. 中国人群Hedgehog通路基因与非综合征型唇腭裂的亲源效应[J]. 北京大学学报(医学版), 2020, 52(5): 809-814. |
[2] | 周仁,郑鸿尘,李文咏,王梦莹,王斯悦,李楠,李静,周治波,吴涛,朱洪平. 利用二代测序数据探索SPRY基因家族与中国人群非综合征型唇腭裂的关联[J]. 北京大学学报(医学版), 2019, 51(3): 564-570. |
[3] | 张杰铌,宋凤岐,周绍楠,郑晖,彭丽颖,张倩,赵望泓,张韬文,李巍然,周治波,林久祥,陈峰. 中国唇腭裂患者Sonic hedgehog信号通路相关单核苷酸多态性的分析[J]. 北京大学学报(医学版), 2019, 51(3): 556-563. |
|