北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (6): 1088-1092. doi: 10.19723/j.issn.1671-167X.2020.06.016

• 论著 • 上一篇    下一篇

Ro52抗体与其他肌炎抗体共阳性的相关性研究

郑艺明,郝洪军,刘怡琳,郭晶,赵亚雯,张巍,袁云()   

  1. 北京大学第一医院神经内科,北京 100034
  • 收稿日期:2018-11-02 出版日期:2020-12-18 发布日期:2020-12-13
  • 通讯作者: 袁云 E-mail:yuanyun2002@126.com
  • 基金资助:
    北京大学第一医院科研种子基金(2018SF033)

Correlation study on anti-Ro52 antibodies frequently co-occur with other myositis-specific and myositis-associated autoantibodies

Yi-ming ZHENG,Hong-jun HAO,Yi-lin LIU,Jing GUO,Ya-wen ZHAO,Wei ZHANG,Yun YUAN()   

  1. Department of Neurology, Peking University First Hospital, Beijing 100034, China
  • Received:2018-11-02 Online:2020-12-18 Published:2020-12-13
  • Contact: Yun YUAN E-mail:yuanyun2002@126.com
  • Supported by:
    Scientific Research Seed Fund of Peking University First Hospital(2018SF033)

摘要:

目的:观察Ro52抗体与其他肌炎抗体共阳性的相关规律。方法:回顾性分析2010—2016年在北京大学第一医院应用线性免疫印迹法检测的1 509例临床疑诊为炎症性肌病患者血清中11种肌炎特异性或相关性抗体(Jo-1、PL-7、PL-12、EJ、OJ、Mi-2、SRP、Ku、PM-Scl 75、PM-Scl 100、Ro52)的检查结果,分析Ro52抗体与其他肌炎抗体共阳性的相关规律,用SPSS 17.0以及Graph Pad PRISM软件进行统计学分析及作图。结果:Ro52抗体阳性率达18.3%(276/1 509例),为最常检测出的肌炎抗体。Ro52抗体阳性的患者中有51.8%合并其他肌炎抗体,合并SRP抗体的比例最高(18.8%),其次为Jo-1抗体(13.0%)。除OJ抗体外,其他肌炎抗体阳性患者最常合并的另一种抗体均为Ro52,其共阳性率在PM-Scl 75阳性组最低(30.4%)、在EJ抗体阳性组最高(80.0%)。抗合成酶抗体阳性的患者有57.3%合并Ro52抗体,显著高于非抗合成酶抗体阳性的患者(35.2%, χ2=18.916,P<0.001)。Jo-1抗体、EJ抗体以及SRP抗体阳性的患者中,Ro52抗体共阳性组的抗体谱带强度均显著高于相应的Ro52抗体阴性组(P<0.05)。SRP抗体谱带强度与Ro52抗体谱带强度呈显著正相关(r=0.44,P=0.001)。结论:Ro52抗体是其他肌炎抗体阳性患者常合并出现的一种抗体,尤其是抗合成酶抗体阳性的患者,是否合并出现Ro52抗体可能与该肌炎抗体的滴度相关。

关键词: 自身抗体, 肌炎, 自身免疫疾病

Abstract:

Objective: Anti-Ro52 antibodies are frequently co-occur with other myositis-specific and myositis-associated autoantibodies, we here to study this phenomenon in Chinese patients suspected with inflammatory myopathies. Methods: In the study, 1 509 patients clinically suspected with inflammatory myopathies were tested for 11 kinds of myositis-specific and myositis-associated autoantibodies (including: anti-Jo-1, PL-7, PL-12, EJ, OJ, Mi-2, SRP, Ku, PM-Scl 75, PM-Scl 100, and Ro52 antibo-dies) by line-blot immunoassay from 2010 to 2016 in Peking University First Hospital. This retrospective study was to analyze these results to reveal the characteristics of anti-Ro52 antibodies co-occuring with other myositis autoantibodies. The data were analyzed using SPSS 17.0 and Graph Pad PRISM for Chi-square test, independent t-test, Pearson’s correlation analysis, and drawing statistical graphs. Significance level was set at P<0.05. Results: The positive rate of anti-Ro52 antibodies was 18.3% (276/1 509 cases), which was the most frequently detected myositis antibodies in our center. 51.8% (143/276) of the patients with anti-Ro52 antibodies were combined with the other myositis antibodies, and the most common co-occurred antibodies were anti-SRP antibodies (18.8%, 52/276), and the second common co-occurred antibodies were anti-Jo-1 antibodies (13.0%, 36/276). Anti-Ro52 antibodies were the most common antibodies that co-occurred in other myositis antibodies positive patients except in anti-OJ antibodies positive group. The co-positive rate with anti-Ro52 antibodies was the lowest in anti-PM-Scl 75 positive group (30.4%, 31/102), and the highest in anti-EJ positive group (80.0%, 12/15). The positive rate of anti-Ro52 antibodies in anti-synthase antibodies (including anti-Jo-1, EJ, OJ, PL-7, and PL-12 antibodies) positive group was 57.3% (75/131), which was significantly higher than that in the other antibodies (including: anti-Mi-2, SRP, Ku, PM-Scl 75, and PM-Scl 100 antibodies) positive group with 35.2% (119/338) (χ2=18.916, P<0.001). The intensity of anti-Jo-1, EJ, and SRP antibodies in the group of the patients that co-occurred with anti-Ro52 antibodies was significantly higher than that in the other group without anti-Ro52 antibodies respectively (P<0.05). The intensity of anti-SRP antibodies was significantly correlated with that of anti-Ro52 antibodies (r=0.44, P=0.001). Conclusion: Anti-Ro52 antibodies were commonly associated with other myositis-specific and myositis-associated autoantibodies, especially with anti-synthase antibodies, and the co-presence of anti-Ro52 antibodies may be correlated with the myositis antibody intensity.

Key words: Autoantibodies, Myositis, Autoimmune diseases

中图分类号: 

  • R593.2

图1

1 509例临床疑诊为炎症性肌病患者血清中肌炎抗体的检出情况"

表1

肌炎抗体之间共阳性的频数及频率"

Antibodies Jo-1 EJ OJ PL-7 PL-12 SRP Mi-2 Ku PM-Scl 75 PM-Scl 100 Ro52
Jo-1 (n=61) - 1 (1.6) 2 (3.3) 0 0 6 (9.8) 4 (6.6) 1 (1.6) 6 (9.8) 1 (1.6) 36 (59.0)
EJ (n=15) 1 (6.7) - 1 (6.7) 1 (6.7) 2 (13.3) 2 (13.3) 1 (6.7) 2 (13.3) 2 (13.3) 1 (6.7) 12 (80.0)
OJ (n=12) 2 (16.7) 1 (8.3) - 0 1 (8.3) 3 (25.0) 2 (16.7) 1 (8.3) 8 (66.7) 1 (8.3) 5 (41.7)
PL-7 (n=27) 0 1 (3.7) 0 - 0 3 (11.1) 1 (3.7) 4 (14.8) 7 (25.9) 1 (3.7) 12 (44.4)
PL-12 (n=16) 0 2 (12.5) 1 (6.3) 0 - 2 (12.5) 1 (6.3) 3 (18.8) 0 0 10 (62.5)
SRP (n=141) 6 (4.3) 2 (1.4) 3 (2.1) 3 (2.1) 2 (1.4) - 2 (1.4) 8 (5.7) 22 (15.6) 3 (2.1) 52 (36.9)
Mi-2 (n=26) 4 (15.4) 1 (3.8) 2 (7.7) 1 (3.8) 1 (3.8) 2 (7.7) - 4 (15.4) 6 (23.1) 3 (11.5) 10 (38.5)
Ku (n=43) 1 (2.3) 2 (4.7) 1 (2.3) 4 (9.3) 3 (7.0) 8 (18.6) 4 (9.3) - 10 (23.3) 1 (2.3) 16 (37.2)
PM-Scl 75 (n=102) 6 (5.9) 2 (2.0) 8 (7.8) 7 (6.9) 0 22 (21.6) 6 (5.9) 10 (9.8) - 8 (7.8) 31 (30.4)
PM-Scl 100 (n=26) 1 (3.8) 1 (3.8) 1 (3.8) 1 (3.8) 0 3 (11.5) 3 (11.5) 1 (3.8) 8 (30.8) - 10 (38.5)
Ro52 (n=276) 36 (13.0) 12 (4.3) 5 (1.8) 12 (4.3) 10 (3.6) 52 (18.8) 10 (3.6) 16 (5.8) 31 (11.2) 10 (3.6) -

图2

Ro52抗体阳性与Ro52抗体阴性两组间肌炎抗体谱带强度的比较"

图3

Ro52抗体与Jo-1抗体、SRP抗体和PM-Scl 75抗体之间谱带强度的相关性分析"

[1] Cruellas MG, Viana VS, Levy-Neto M, et al. Myositis-specific and myositis-associated autoantibody profiles and their clinical associations in a large series of patients with polymyositis and dermatomyositis[J]. Clinics (Sao Paulo), 2013,68(7):909-914.
doi: 10.6061/clinics
[2] Lee A. A review of the role and clinical utility of anti-Ro52/TRIM21 in systemic autoimmunity[J]. Rheumatol Int, 2017,37(8):1323-1333.
doi: 10.1007/s00296-017-3718-1 pmid: 28417151
[3] Rutjes SA, Vree EW, Jongen P, et al. Anti-Ro52 antibodies frequently co-occur with anti-Jo-1 antibodies in sera from patients with idiopathic inflammatory myopathy[J]. Clin Exp Immunol, 1997,109(1):32-40.
doi: 10.1046/j.1365-2249.1997.4081308.x pmid: 9218821
[4] Oke V, Wahren-Herlenius M. The immunobiology of Ro52 (TRIM21) in autoimmunity: A critical review[J]. J Autoimmun, 2012,39(1/2):77-82.
doi: 10.1016/j.jaut.2012.01.014
[5] Damoiseaux J, Boesten K, Giesen J, et al. Evaluation of a novel line-blot immunoassay for the detection of antibodies to extractable nuclear antigens[J]. Ann N Y Acad Sci, 2005,1050:340-347.
doi: 10.1196/annals.1313.036 pmid: 16014550
[6] Frank MB, Mccubbin V, Trieu E, et al. The association of anti-Ro52 autoantibodies with myositis and scleroderma autoantibodies[J]. J Autoimmun, 1999,12(2):137-142.
doi: 10.1006/jaut.1998.0265 pmid: 10047434
[7] Brouwer R, Hengstman GJ, Vree EW, et al. Autoantibody profiles in the sera of European patients with myositis[J]. Ann Rheum Dis, 2001,60(2):116-123.
doi: 10.1136/ard.60.2.116 pmid: 11156543
[8] Venables PJ. Antibodies to Jo-1 and Ro-52: why do they go together?[J]. Clin Exp Immunol, 1997,109(3):403-405.
doi: 10.1046/j.1365-2249.1997.4761369.x pmid: 9328112
[9] Bundell C, Rojana-Udomsart A, Mastaglia F, et al. Diagnostic performance of a commercial immunoblot assay for myositis antibody testing[J]. Pathology, 2016,48(4):363-366.
doi: 10.1016/j.pathol.2016.03.012 pmid: 27114370
[10] Marie I, Hatron PY, Dominique S, et al. Short-term and long-term outcome of anti-Jo1-positive patients with anti-Ro52 antibody[J]. Semin Arthritis Rheum, 2012,41(6):890-899.
doi: 10.1016/j.semarthrit.2011.09.008 pmid: 22078416
[11] 孟令超, 李毅, 张巍, 等. Jo-1综合征的临床及骨骼肌病理特点[J]. 中华医学杂志, 2016,96(29):2352-2355.
[12] Yamasaki Y, Satoh M, Mizushima M, et al. Clinical subsets associated with different anti-aminoacyl transfer RNA synthetase antibodies and their association with coexisting anti-Ro52[J]. Mod Rheumatol, 2016,26(3):403-409.
doi: 10.3109/14397595.2015.1091155 pmid: 26344678
[13] Bauhammer J, Blank N, Max R, et al. Rituximab in the treatment of Jo1 antibody-associated antisynthetase syndrome: Anti-Ro52 positivity as a marker for severity and treatment response[J]. J Rheumatol, 2016,43(8):1566-1574.
doi: 10.3899/jrheum.150844 pmid: 27252419
[14] Ben-Chetrit E, Chan EK, Sullivan KF, et al. A 52-kD protein is a novel component of the SS-A/Ro antigenic particle[J]. J Exp Med, 1988,167(5):1560-1571.
doi: 10.1084/jem.167.5.1560 pmid: 3367095
[15] Peene I, Meheus L, de Keyser S, et al. Anti-Ro52 reactivity is an independent and additional serum marker in connective tissue disease[J]. Ann Rheum Dis, 2002,61(10):929-933.
doi: 10.1136/ard.61.10.929 pmid: 12228166
[16] Menendez A, Gomez J, Escanlar E, et al. Clinical associations of anti-SSA/Ro60 and anti-Ro52/TRIM21 antibodies: Diagnostic utility of their separate detection[J]. Autoimmunity, 2013,46(1):32-39.
pmid: 23039326
[17] Srivastava P, Dwivedi S, Misra R. Myositis-specific and myositis-associated autoantibodies in Indian patients with inflammatory myositis[J]. Rheumatol Int, 2016,36(7):935-943.
doi: 10.1007/s00296-016-3494-3 pmid: 27193471
[18] Gunnarsson R, El-Hage F, Aalokken TM, et al. Associations between anti-Ro52 antibodies and lung fibrosis in mixed connective tissue disease[J]. Rheumatology (Oxford), 2016,55(1):103-108.
doi: 10.1093/rheumatology/kev300
[1] 肖云抒,朱冯赟智,罗澜,邢晓燕,李玉慧,张学武,沈丹华. 88例重叠肌炎的临床及免疫学特征[J]. 北京大学学报(医学版), 2021, 53(6): 1088-1093.
[2] 罗澜,邢晓燕,肖云抒,陈珂彦,朱冯赟智,张学武,李玉慧. 抗合成酶综合征合并心脏受累患者的临床及免疫学特征[J]. 北京大学学报(医学版), 2021, 53(6): 1078-1082.
[3] 张朴丽,杨红霞,张立宁,葛勇鹏,彭清林,王国春,卢昕. 血清YKL-40在诊断抗黑色素瘤分化相关基因5阳性皮肌炎合并严重肺损伤中的价值[J]. 北京大学学报(医学版), 2021, 53(6): 1055-1060.
[4] 伊文霞,魏翠洁,吴晔,包新华,熊晖,常杏芝. 长疗程利妥昔单抗治疗难治性幼年型特发性炎症性肌病3例[J]. 北京大学学报(医学版), 2021, 53(6): 1191-1195.
[5] 吴燕芳,高飞,林滇恬,陈志涵,林禾. 托法替布联合治疗抗MDA5抗体阳性的无肌病皮肌炎并发快速进展型间质性肺病5例临床分析[J]. 北京大学学报(医学版), 2021, 53(5): 1012-1016.
[6] 甘雨舟,李玉慧,张丽华,马琳,何文雯,金月波,安媛,栗占国,叶华. 临床无肌病性皮肌炎与皮肌炎临床及免疫学特征比较[J]. 北京大学学报(医学版), 2020, 52(6): 1001-1008.
[7] 赵静,孙峰,李云,赵晓珍,徐丹,李英妮,李玉慧,孙晓麟. 抗α-1C微管蛋白抗体在系统性硬化症中的表达及临床意义[J]. 北京大学学报(医学版), 2020, 52(6): 1009-1013.
[8] 朱冯赟智,邢晓燕,汤晓菲,李依敏,邵苗,张学武,李玉慧,孙晓麟,何菁. 肌炎合并血栓栓塞患者的临床及免疫学特征[J]. 北京大学学报(医学版), 2020, 52(6): 995-1000.
[9] 杨红霞,田小兰,江薇,李文丽,刘青艳,彭清林,王国春,卢昕. 免疫介导坏死性肌病的临床和病理特征分析[J]. 北京大学学报(医学版), 2019, 51(6): 989-995.
[10] 李英妮,相晓红,赵静,李云,孙峰,王红彦,贾汝琳,胡凡磊. 抗类瓜氨酸化抗体在系统性红斑狼疮中的意义[J]. 北京大学学报(医学版), 2019, 51(6): 1019-1024.
[11] 徐婧,徐静,李鹤,唐杰,舒建龙,张婧,石连杰,李胜光. 皮肌炎合并IgA血管炎1例[J]. 北京大学学报(医学版), 2019, 51(6): 1173-1177.
[12] 杨伊莹,左晓霞,朱红林,刘思佳. 皮肌炎/多肌炎表观遗传学标志物的研究进展[J]. 北京大学学报(医学版), 2019, 51(2): 374-377.
[13] 王永福,刘媛. 自身抗体在肿瘤及感染性疾病发生、发展中的作用[J]. 北京大学学报(医学版), 2018, 50(6): 952-955.
[14] 余建峰, 金月波, 何菁, 安媛, 栗占国. 皮肌炎继发干燥综合征伴肺间质病变的血清人Ⅱ型肺泡细胞表面抗原变化1例[J]. 北京大学学报(医学版), 2017, 49(5): 910-914.
[15] 刘洪江, 石连杰, 胡凡磊, 姚海红, 栗占国, 贾园. 趋化因子配体19在系统性红斑狼疮中的表达及其与B细胞异常的相关性研究[J]. 北京大学学报(医学版), 2017, 49(5): 829-834.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张三. 中文标题测试[J]. 北京大学学报(医学版), 2010, 42(1): 1 -10 .
[2] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[3] 万有, , 韩济生, John E. Pintar. 孤啡肽基因敲除小鼠电针镇痛作用增强[J]. 北京大学学报(医学版), 2009, 41(3): 376 -379 .
[4] 张燕, 韩志慧, 钟延丰, 王盛兰, 李玲玲, 郑丹枫. 骨骼肌活组织检查病理诊断技术的改进及应用[J]. 北京大学学报(医学版), 2009, 41(4): 459 -462 .
[5] 赵奇, 薛世华, 刘志勇, 吴凌云. 同向施压测定自酸蚀与全酸蚀粘接系统粘接强度[J]. 北京大学学报(医学版), 2010, 42(1): 82 -84 .
[6] 丰雷, 程嘉, 王玉凤. 注意缺陷多动障碍儿童的运动协调功能[J]. 北京大学学报(医学版), 2007, 39(3): 333 -336 .
[7] 李岳玲, 钱秋瑾, 王玉凤. 儿童注意缺陷多动障碍成人期预后及其预测因素[J]. 北京大学学报(医学版), 2007, 39(3): 337 -340 .
[8] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .
[9] 牟向东, 王广发, 刁小莉, 阙呈立. 肺黏膜相关淋巴组织型边缘区B细胞淋巴瘤一例[J]. 北京大学学报(医学版), 2007, 39(4): 346 -350 .
[10] 韩金涛, 赵军, 栾景源, 张龙. 多发结核性腹主动脉瘤一例[J]. 北京大学学报(医学版), 2007, 39(4): 361 -364 .