北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (1): 120-125. doi: 10.19723/j.issn.1671-167X.2021.01.018

• 论著 • 上一篇    下一篇

玻璃体和通用型复合树脂耐磨性的临床对照研究

穆海丽1,2,田福聪3,王晓燕1,Δ(),高学军1   

  1. 1.北京大学口腔医学院·口腔医院,牙体牙髓科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081
    2.北京大学口腔医学院·口腔医院第一门诊部综合科,北京 100034
  • 收稿日期:2020-10-09 出版日期:2021-02-18 发布日期:2021-02-07
  • 通讯作者: 王晓燕 E-mail:wangxiaoyan@pkuss.bjmu.edu.cn

Evaluation of wear property of Giomer and universal composite in vivo

MU Hai-li1,2,TIAN Fu-cong3,WANG Xiao-yan1,Δ(),GAO Xue-jun1   

  1. 1. Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    2. First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100034, China
  • Received:2020-10-09 Online:2021-02-18 Published:2021-02-07
  • Contact: Xiao-yan WANG E-mail:wangxiaoyan@pkuss.bjmu.edu.cn

摘要:

目的: 采用激光三维扫描技术评估玻璃体和通用型复合树脂用于后牙充填的耐磨性。方法: 根据纳入标准选取48名患者共108颗患牙(每组各54颗),随机分配用玻璃体(Beautifil Ⅱ,简称BF)或通用型复合树脂(Filtek Z350,简称Z350)进行充填。分别于术后1周、6个月、18个月和4年,采用改良美国公共卫生署(United States Public Health Service,USPHS)标准对充填体进行临床评价并拍照和制取模型。使用激光三维扫描仪扫描模型后,对图像进行配准和计算磨耗深度,使用SPSS 20.0进行统计分析。结果: 术后4年回访43名患者,回访率为89.6%。BF组和Z350组各有4例和3例出现脱落、继发龋、充填体折断和牙髓坏死。两组充填体的4年存留率均为95.8%,符合美国牙医协会(American Dental Association,ADA)标准(3年存留率>90%)。0~6个月两组充填体的磨耗速率最快,随后磨耗速率的下降趋于平缓,BF组4年总磨耗深度为(58±22) μm,Z350组为(54±16) μm(P>0.05), 耐磨性均符合ADA标准(3年磨耗深度<100 μm)。两组充填体均表现为围绕咬合接触区形成凹坑状磨耗(Ⅰ型)和充填体发生均匀磨耗(Ⅱ型)。术后4年,Ⅰ型磨耗充填体中,BF组的磨耗深度大于Z350组(P<0.05),Ⅱ型磨耗充填体中,两组间差异无统计学意义(P>0.05)。结论: 玻璃体的4年存留率和耐磨性均符合ADA标准,用于后牙牙合面重咬合接触区时,玻璃体的耐磨性略逊于复合树脂,用于非重咬合接触区时,二者间无明显差异。

关键词: 复合树脂类, 牙修复磨损, 成像, 三维

Abstract:

Objective: To observe the wear performance of Giomer and universal composite for posterior restorations by 3D laser scan method, in order to guide the material selection in clinic.Methods: In this study,48 patients (108 teeth) were selected according to the inclusion and exclusion criteria. All the patients in need of a minimum of 2 Class Ⅰ and/or Class Ⅱ restorations were invited to join the study. The teeth were restored with Giomer (Beautifil Ⅱ, BF) and universal composite (Filtek Z350, Z350) randomly. The restorations were evaluated at baseline and after 6-, 18-, 48-month using the modified United States Public Health Service (USPHS) criteria for clinical performance. The in vivo images and gypsum replicas were taken at each recall. A 3D-laser scanner and Geomagic Studio 12 were used to analyze the wear depth quantitatively. Statistical analysis was performed with SPSS 20.0.Results: After 4 years, 89.6% patients were recalled. The survival rate of both materials was 95.8% (Kaplan-Meier survival analysis). Seven restorations of the two materials failed due to loss of restoration, bulk fracture, secondary caries and pulp necrosis. The wear patterns of restorations were divided into 2 classes. Pattern Ⅰ: occlusal contact areas showed the deepest and fastest wear depth; pattern Ⅱ: the wear depth was slow and uniform. Both materials showed a rapid wear in the first 6 months. Then the wear rate was decreased. The occlusal wear depth after 4 years were (58±22) μm and (54±16) μm for BF group and Z350 group respectively, which were in accordance with the American Dental Association (ADA) guidelines (wear depth for 3 years <100 μm). No significant differences (P>0.05) were observed between the two groups. Regarding the restorations with wear pattern Ⅰ, the wear depth of BF group was higher than Z350 group at 6- and 48-month (P<0.05), while there was no significant difference between restorations with wear pattern Ⅱ (P>0.05).Conclusion: Within the limitation of the study, after 4 years, the survival rate and wear resistance of Giomer met ADA guidelines for tooth-colored restorative materials for posterior teeth. When the two materials were applied in occlusal contact areas, wear resistance of Giomer was slightly lower than universal composite resin. No significant difference was found when they were applied in none of the occlusal contact areas.

Key words: Composite resins, Dental restoration wear, Imaging, three-dimensional

中图分类号: 

  • R783.1

图1

图像扫描及配准过程"

图2

BF组和Z350组磨耗深度及磨耗速率随时间的变化"

表1

不同牙位和洞型对磨耗深度的影响"

Items Wear depth/μm, x-±s
Tooth type Cavity type
Premolar Molar Class Ⅰ Class Ⅱ
BF group
6 months 40±13 45±16 51±16 40±13
18 months 48±14 53±18 56±16 48±15
48 months 53±17 66±27 64±21 57±23
Mann-Whitney U test P>0.05 P>0.05
Z350 group
6 months 38±16 36±10 39±12 37±14
18 months 50±20 45±10 46±13 47±16
48 months 50±14 58±18 59±18 53±17
Mann-Whitney U test P>0.05 P>0.05

图3

激光三维扫描图像分析充填体的磨耗情况"

表2

BF组和Z350组充填体磨耗类型分布"

Items Pattern Ⅰ Pattern Ⅱ Total
BF group 16 27 43
Z350 group 17 25 42
Total 33 52 85

图4

两组不同磨耗类型的磨耗深度对比"

[1] Gordan VV, Blaser PK, Watson RE, et al. A clinical evaluation of a giomer restorative system containing surface prereacted glass ionomer filler: results from a 13-year recall examination[J]. J Am Dent Assoc, 2014,145(10):1036-1043.
[2] Manhart J, Chen HY, Hickel R. Clinical evaluation of the poste-rior composite Quixfil in class Ⅰ and Ⅱ cavities: 4-year follow-up of a randomized controlled trial[J]. J Adhes Dent, 2010,12(3):237-243.
doi: 10.3290/j.jad.a17551 pmid: 20157663
[3] Oz FD, Ergin E, Canatan S. Twenty-four-month clinical perfor-mance of different universal adhesives in etch-and-rinse, selective etching and self-etch application modes in NCCL: a randomized controlled clinical trial[J]. J Appl Oral Sci, 2019,27:e20180358.
doi: 10.1590/1678-7757-2018-0358 pmid: 30994773
[4] Koc Vural U, Meral E, Ergin E, et al. Twenty-four-month clinical performance of a glass hybrid restorative in non-carious cervical lesions of patients with bruxism: a split-mouth, randomized clinical trial[J]. Clin Oral Investig, 2020,24(3):1229-1238.
doi: 10.1007/s00784-019-02986-x pmid: 31297658
[5] Hayashi M, Wilson NH. Failure risk of posterior composites with post-operative sensitivity[J]. Oper Dent, 2003,28(6):681-688.
pmid: 14653280
[6] Heintze SD. Clinical relevance of tests on bond strength, microleakage and marginal adaptation[J]. Dent Mater, 2013,29(1):59-84.
doi: 10.1016/j.dental.2012.07.158
[7] Naoum S, Ellakwa A, Martin F, et al. Fluoride release, recharge and mechanical property stability of various fluoride-containing resin composites[J]. Oper Dent, 2011,36(4):422-432.
doi: 10.2341/10-414-L pmid: 21819201
[8] Ikemura K, Tay FR, Endo T, et al. A review of chemical-approach and ultramorphological studies on the development of fluoride-releasing dental adhesives comprising new pre-reacted glass ionomer (PRG) fillers[J]. Dent Mater J, 2008,27(3):315-339.
doi: 10.4012/dmj.27.315 pmid: 18717159
[9] Saku S, Kotake H, Scougall-Vilchis RJ, et al. Antibacterial acti-vity of composite resin with glass-ionomer filler particles[J]. Dent Mater J, 2010,29(2):193-198.
doi: 10.4012/dmj.2009-050 pmid: 20379030
[10] Kitagawa H, Miki-Oka S, Mayanagi G, et al. Inhibitory effect of resin composite containing S-PRG filler on Streptococcus mutans glucose metabolism[J]. J Dent, 2018,70:92-96.
doi: 10.1016/j.jdent.2017.12.017 pmid: 29294301
[11] Kakuta K, Wonglamsam A, Goto S, et al. Surface textures of composite resins after combined wear test simulating both occlusal wear and brushing wear[J]. Dent Mater J, 2012,31(1):61-67.
doi: 10.4012/dmj.2010-091
[12] Ruivo MA, Pacheco RR, Sebold M, et al. Surface roughness and filler particles characterization of resin-based composites[J]. Microsc Res Tech, 2019,82(10):1756-1767.
doi: 10.1002/jemt.23342 pmid: 31313442
[13] Condo R, Cerroni L, Pasquantonio G, et al. A deep morphological characterization and comparison of different dental restorative materials[J]. Biomed Res Int, 2017,2017:7346317.
doi: 10.1155/2017/7346317 pmid: 28752095
[14] Heintze SD, Faouzi M, Rousson V, et al. Correlation of wear in vivo and six laboratory wear methods[J]. Dent Mater, 2012,28(9):961-973.
doi: 10.1016/j.dental.2012.04.006
[15] Heintze SD, Ilie N, Hickel R, et al. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials: A systematic review[J]. Dent Mater, 2017,33(3):e101-e114.
doi: 10.1016/j.dental.2016.11.013 pmid: 27993372
[16] Hickel R, Roulet JF, Bayne S, et al. Recommendations for conducting controlled clinical studies of dental restorative materials[J]. Clin Oral Investig, 2007,11(1):5-33.
doi: 10.1007/s00784-006-0095-7 pmid: 17262225
[17] Leinfelder KF, Taylor DF, Barkmeier WW, et al. Quantitative wear measurement of posterior composite resins[J]. Dent Mater, 1986,2(5):198-201.
doi: 10.1016/S0109-5641(86)80013-6 pmid: 3468024
[18] Mehl A, Gloger W, Kunzelmann KH, et al. A new optical 3-D device for the detection of wear[J]. J Dent Res, 1997,76(11):1799-1807.
doi: 10.1177/00220345970760111201 pmid: 9372798
[19] Palotie U, Eronen AK, Vehkalahti K, et al. Longevity of 2- and 3-surface restorations in posterior teeth of 25- to 30-year-old attending Public Dental Service: A 13-year observation[J]. J Dent, 2017,62:13-17.
doi: 10.1016/j.jdent.2017.05.012 pmid: 28529175
[20] The American Dental Association. ADA acceptance program guidelines: resin based composites for posterior restorations [R]. Chicago: ADA Council on Scientific Affairs, 2001.
[21] Lempel E, Toth A, Fabian T, et al. Retrospective evaluation of posterior direct composite restorations: 10-year findings[J]. Dent Mater, 2015,31(2):115-122.
doi: 10.1016/j.dental.2014.11.001 pmid: 25480695
[22] Demarco FF, Correa MB, Cenci MS, et al. Longevity of posterior composite restorations: not only a matter of materials[J]. Dent Mater, 2012,28(1):87-101.
doi: 10.1016/j.dental.2011.09.003
[23] Hewlett ER, Orro ME, Clark GT. Accuracy testing of three-dimensional digitizing systems[J]. Dent Mater, 1992,8(1):49-53.
doi: 10.1016/0109-5641(92)90053-f pmid: 1521684
[24] Thongthammachat S, Moore BK, Barco MT 2nd, et al. Dimensional accuracy of dental casts: influence of tray material, impression material, and time[J]. J Prosthodont, 2002,11(2):98-108.
pmid: 12087547
[25] Palaniappan S, Bharadwaj D, Mattar DL, et al. Three-year randomized clinical trial to evaluate the clinical performance and wear of a nanocomposite versus a hybrid composite[J]. Dent Mater, 2009,25(11):1302-1314.
doi: 10.1016/j.dental.2009.06.001
[26] Palaniappan S, Elsen L, Lijnen I, et al. Nanohybrid and microfilled hybrid versus conventional hybrid composite restorations: 5-year clinical wear performance[J]. Clin Oral Investig, 2012,16(1):181-190.
doi: 10.1007/s00784-010-0500-0 pmid: 21221678
[27] Goldberg AJ, Rydinge E, Santucci EA, et al. Clinical evaluation methods for posterior composite restorations[J]. J Dent Res, 1984,63(12):1387-1391.
doi: 10.1177/00220345840630120901 pmid: 6239885
[28] da Rosa Rodolpho PA, Cenci MS, Donassollo TA, et al. A clinical evaluation of posterior composite restorations: 17-year findings[J]. J Dent, 2006,34(7):427-435.
doi: 10.1016/j.jdent.2005.09.006 pmid: 16314023
[29] Wilson NHF, Norman RD. Five-year findings of a multiclinical trial for posterior composite[J]. J Dent, 1991,19(3):153-159.
doi: 10.1016/0300-5712(91)90005-j pmid: 1939815
[30] Satou N, Khan AM, Satou K, et al. In-vitro and in-vivo wear profile of composite resins[J]. J Oral Rehabil, 1992,19(1):31-37.
doi: 10.1111/j.1365-2842.1992.tb01588.x pmid: 1316435
[31] Salgado VE, Cavalcante LM, Silikas N, et al. The influence of nanoscale inorganic content over optical and surface properties of model composites[J]. J Dent, 2013,41(Suppl 5):e45-53.
doi: 10.1016/j.jdent.2013.05.011
[32] Lim BS, Ferracane JL, Condon JR, et al. Effect of filler fraction and filler surface treatment on wear of microfilled composites[J]. Dent Mater, 2002,18(1):1-11.
doi: 10.1016/S0109-5641(00)00103-2
[33] Garoushi S, Vallittu PK, Lassila L. Characterization of fluoride releasing restorative dental materials[J]. Dent Mater J, 2018,37(2):293-300.
doi: 10.4012/dmj.2017-161 pmid: 29279547
[34] Gonulol N, Ozer S, Sen Tunc E. Water sorption, solubility, and color stability of giomer restoratives[J]. J Esthet Restor Dent, 2015,27(5):300-306.
doi: 10.1111/jerd.12119 pmid: 25145876
[35] Park CA, Hyun SH, Lee JH, et al. Evaluation of polymerization in fluoride-containing composite resins[J]. J Mater Sci Mater Med, 2007,18(8):1549-1556.
doi: 10.1007/s10856-007-3023-8 pmid: 17437069
[1] 刘思民,赵一姣,王晓燕,王祖华. 动态导航下不同深度环钻定位精确度的体外评价[J]. 北京大学学报(医学版), 2022, 54(1): 146-152.
[2] 邱淑婷,朱玉佳,王时敏,王飞龙,叶红强,赵一姣,刘云松,王勇,周永胜. 姿势微笑位口唇对称参考平面的数字化构建及初步应用验证[J]. 北京大学学报(医学版), 2022, 54(1): 193-199.
[3] 任国勇,吴雪梅,李颖,李婕妤,孙伟平,黄一宁. 大血管闭塞性脑卒中亚急性期磁敏感血管征的表现[J]. 北京大学学报(医学版), 2021, 53(6): 1133-1138.
[4] 李媛,林红,张铁军. 对比传统成像与数字成像对牙科复合树脂X射线阻射性的影响[J]. 北京大学学报(医学版), 2021, 53(5): 995-1001.
[5] 杨刚,胡文杰,曹洁,柳登高. 牙周健康的上颌前牙唇侧嵴顶上牙龈的三维形态分析[J]. 北京大学学报(医学版), 2021, 53(5): 990-994.
[6] 邵振兴,宋庆法,赵宇晴,崔国庆. 一种结合线袢固定的关节镜下“嵌入式”喙突移位术:手术技术及术后影像学分析[J]. 北京大学学报(医学版), 2021, 53(5): 896-901.
[7] 吴一凡,张晓圆,任爽,玉应香,常翠青. 基于磁共振的青年男性股四头肌的测量和评估[J]. 北京大学学报(医学版), 2021, 53(5): 843-849.
[8] 李新飞, 彭意吉, 余霄腾, 熊盛炜, 程嗣达, 丁光璞, 杨昆霖, 唐琦, 米悦, 吴静云, 张鹏, 谢家馨, 郝瀚, 王鹤, 邱建星, 杨建, 李学松, 周利群. 肾部分切除术前CT三维可视化评估标准的初步探究[J]. 北京大学学报(医学版), 2021, 53(3): 613-622.
[9] 胡迪,张苗,康惠颖,彭芸. 0~2岁婴幼儿磁共振脑白质模板的建立及验证[J]. 北京大学学报(医学版), 2021, 53(2): 341-347.
[10] 陈迪,徐翔宇,汪明睿,李芮,臧根奥,张悦,钱浩楠,闫光荣,范田园. 熔融沉积成型3D打印盐酸维拉帕米胃漂浮制剂的制备与体外评价[J]. 北京大学学报(医学版), 2021, 53(2): 348-354.
[11] 黄新瑞,李莎,高嵩. 冷冻电镜成像中噪声的滤波方法进展[J]. 北京大学学报(医学版), 2021, 53(2): 425-433.
[12] 岳兆国,张海东,杨静文,侯建霞. 数字化评估CAD/CAM个性化基台与成品基台影响粘接剂残留的体外研究[J]. 北京大学学报(医学版), 2021, 53(1): 69-75.
[13] 徐啸翔,曹烨,赵一姣,贾璐,谢秋菲. 数字化个齿托盘制取下颌全牙列全冠预备体印模的体外评价[J]. 北京大学学报(医学版), 2021, 53(1): 54-61.
[14] 国丹妮,潘韶霞,衡墨笛,屈健,魏秀霞,周永胜. 应用于无牙颌种植修复设计的三维面部扫描配准方法的对比[J]. 北京大学学报(医学版), 2021, 53(1): 83-87.
[15] 李思雨,段雪飞,曹烨. 应用超声器械改善预备体肩台的效果[J]. 北京大学学报(医学版), 2021, 53(1): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张三. 中文标题测试[J]. 北京大学学报(医学版), 2010, 42(1): 1 -10 .
[2] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[3] 万有, , 韩济生, John E. Pintar. 孤啡肽基因敲除小鼠电针镇痛作用增强[J]. 北京大学学报(医学版), 2009, 41(3): 376 -379 .
[4] 张燕, 韩志慧, 钟延丰, 王盛兰, 李玲玲, 郑丹枫. 骨骼肌活组织检查病理诊断技术的改进及应用[J]. 北京大学学报(医学版), 2009, 41(4): 459 -462 .
[5] 赵奇, 薛世华, 刘志勇, 吴凌云. 同向施压测定自酸蚀与全酸蚀粘接系统粘接强度[J]. 北京大学学报(医学版), 2010, 42(1): 82 -84 .
[6] 林红, 王玉凤, 吴野平. 学校生活技能教育对小学三年级学生行为问题影响的对照研究[J]. 北京大学学报(医学版), 2007, 39(3): 319 -322 .
[7] 丰雷, 程嘉, 王玉凤. 注意缺陷多动障碍儿童的运动协调功能[J]. 北京大学学报(医学版), 2007, 39(3): 333 -336 .
[8] 李岳玲, 钱秋瑾, 王玉凤. 儿童注意缺陷多动障碍成人期预后及其预测因素[J]. 北京大学学报(医学版), 2007, 39(3): 337 -340 .
[9] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .
[10] 牟向东, 王广发, 刁小莉, 阙呈立. 肺黏膜相关淋巴组织型边缘区B细胞淋巴瘤一例[J]. 北京大学学报(医学版), 2007, 39(4): 346 -350 .