北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (2): 340-345. doi: 10.19723/j.issn.1671-167X.2022.02.023

• 论著 • 上一篇    下一篇

上磨牙颊侧微种植体支抗在安氏Ⅱ类正畸减数拔牙患者垂直向控制中的作用

梁炜,汤瑶,黄文斌,韩冰(),林久祥   

  1. 北京大学口腔医学院·口腔医院正畸科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081
  • 收稿日期:2020-10-10 出版日期:2022-04-18 发布日期:2022-04-13
  • 通讯作者: 韩冰 E-mail:kqbinghan@bjmu.edu.cn

Efficacy of vertical control by using mini-implant anchorage in maxillary posterior buccal area for Angle class Ⅱ extraction patients

LIANG Wei,TANG Yao,HUANG Wen-bin,HAN Bing(),LIN Jiu-xiang   

  1. Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
  • Received:2020-10-10 Online:2022-04-18 Published:2022-04-13
  • Contact: Bing HAN E-mail:kqbinghan@bjmu.edu.cn

摘要:

目的: 探讨常规上磨牙颊侧微种植体支抗技术对安氏Ⅱ类拔牙矫治病例垂直向控制中的作用。方法: 对常规使用两颗上磨牙颊侧微种植体支抗的28例安氏Ⅱ类正畸减数拔牙患者进行治疗前后头颅侧位X线片的头影测量分析比较。结果: 头影测量发现垂直向指标中,下颌平面角 SN-MP平均减小1.40°±1.45°,FMA平均减小1.58°±1.32°;后前面高比(S-Go/N-Me)平均减小 1.42%±1.43%;Y轴角平均减小1.03°±0.99°,面角平均增大1.37° ±1.05°,差异均有统计学意义(P<0.001);上颌磨牙平均压低(0.68±1.40) mm,上前牙平均压低(1.07±1.55) mm,差异均有统计学意义(P<0.05), 提示治疗后有一定的上磨牙压低,产生了一定的下颌平面逆时针前旋,对侧貌改善产生了积极影响。结论: 常规上磨牙颊侧微种植体支抗有一定的垂直向控制能力,可以产生一定的下颌逆时针旋转,可更好地改善安氏Ⅱ类患者的侧貌。

关键词: 垂直向控制, 微种植体支抗, 头影测量

Abstract:

Objective: To investigate the efficacy of vertical control by using conventional mini-implant anchorage in maxillary posterior buccal area for Angle class Ⅱ extraction patients. Methods: Twenty-eight Angle class Ⅱ patients [9 males, 19 females, and age (22.6±2.8) years] were selected in this study. All of these patients were treated by using straight wire appliance with 4 premolars extraction and 2 mini-implant anchorage in maxillary posterior buccal area. In this study, the self-control method was used to measure and analyze the lateral radiographs taken before and after orthodontic treatment in each case, the main cephalometric analysis items were related to vertical changes. The digitized lateral radiographs were imported into Dolphin Imaging Software (version 11.5: Dolphin Imaging and Management Solutions, Chatsworth, California, USA), and marked points were traced. Each marked point was confirmed by two orthodontists. The same orthodontist performed measurement on the lateral radiographs over a period of time. All measurement items were required to be measured 3 times, and the average value was taken as the final measurement result. Results: Analysis of the cephalometric radiographs showed that, for vertical measurements after treatment, the differences of the following measurements were highly statistically significant (P<0.001): SN-MP decreased by (1.40±1.45) degrees on average, FMA decreased by (1.58±1.32) degrees on average, the back-to-front height ratio (S-Go/N-Me) decreased by 1.42%±1.43% on average, Y-axis angle decreased by (1.03±0.99) degrees on average, face angle increases by (1.37±1.05) degree on average; The following measurements were statistically significant (P<0.05): the average depression of the upper molars was (0.68±1.40) mm, and the average depression of the upper anterior teeth was (1.07±1.55) mm. The outcomes indicated that there was a certain degree of upper molar depression after the treatment, which produced a certain degree of counterclockwise rotation of the mandibular plane, resulting in a positive effect on the improvement of the profile. Conclusion: The conventional micro-implant anchorage in maxillary posterior buccal area has a certain vertical control ability, and can give rise to a certain counterclockwise rotation of the mandible, which would improve the profile of Angle Class Ⅱ patients.

Key words: Vertical control, Microscrew implant anchorage, Cephalometry

中图分类号: 

  • R783.5

图1

微种植体支抗位置及力学效应"

表1

治疗前后X线头影测量相关结果分析( x -±s)"

Items Before treatment After treatment Difference t P
ANB/(°) 5.54±1.73 4.09±1.65 -1.45±1.21 -6.319 <0.001
MP-SN/(°) 36.81±7.05 35.41±6.87 -1.40±1.45 -5.082 <0.001
FMA (MP-FH)/(°) 28.13±6.40 26.54±6.18 -1.58±1.32 -6.324 <0.001
P-A face height (S-Go/N-Me)/% 65.11±5.63 66.53±5.21 1.42±1.43 5.252 <0.001
U6-PP (UPDH)/mm 23.25±1.53 22.57±1.71 -0.68±1.40 -2.556 0.017
U1-PP (UADH)/mm 29.66±2.10 28.59±2.37 -1.07±1.55 -3.363 <0.001
Y-axis (SGn-SN)/(°) 73.66±3.18 72.63±3.29 -1.03±0.99 -5.523 <0.001
Facial plane to SN (SN-NPog)/(°) 76.49±2.71 77.86±2.71 1.37±1.05 6.892 <0.001

图2

患者矫治前的资料"

图3

患者矫治后的资料"

表2

患者治疗前后X线头影测量各项指标的变化"

Items Before treatment After treatment Difference Normal
SNA/(°) 80.8 79.8 -1.0 82.0
SNB/(°) 75.7 76.3 0.6 80.9
ANB/(°) 5.1 3.5 -1.6 1.6
Facial angle (FH-NPo)/(°) 82.2 82.5 0.3 88.6
Convexity (NA-APo)/(°) 10.9 7.3 -3.6 4.9
U1-NA/mm 9.7 4.7 -5.0 4.3
U1-NA/(°) 36.7 26.1 -10.6 22.8
L1-NB/mm 13.0 7.0 -6.0 4.0
L1-NB/(°) 41.6 31.4 -10.2 25.3
Interincisal angle (U1-L1) /(°) 96.6 119.0 22.4 130.3
U1-SN/(°) 117.5 105.9 -11.6 102.8
MP-SN/(°) 40.3 37.5 -2.8 33.0
FMA (MP-FH) /(°) 33.7 31.4 -2.3 23.9
IMPA (L1-MP) /(°) 105.6 97.6 -8.0 95.0
PFH/AFH/% 51.5 52.8 1.3 60.0
P-A face height (S-Go/N-Me)/% 61.5 64.7 3.2 65.0
ANS-Me/Na-Me/% 53.6 53.7 0.1 55.0
ANS-Me (perp HP)/mm 61.7 62.2 0.5 60.6
U6-PP (UPDH)/mm 23.3 23.9 0.6 23.0
U1-PP (UADH)/mm 28.6 27.9 -0.7 28.0
L6-MP (LPDH)/mm 30.0 32.3 2.3 31.0
L1-MP (LADH)/mm 42.3 38.7 -3.6 40.0
Y-axis (SGn-SN)/(°) 73.8 73.4 -0.4 47.0
Y-axis-downs (SGn-FH)/(°) 67.3 67.3 0.0 60.3
Pog-NB/mm -0.2 0.3 0.5 2.4
Facial plane to SN (SN-NPog)/(°) 75.6 76.4 0.8 80.5
Occ plane to FH /(°) 11.1 13.9 2.8 6.8

图4

治疗前后头影测量重叠"

[1] Basha AG, Shantaraj R, Mogegowda SB. Comparative study between conventional en-masse retraction (sliding mechanics) and en-masse retraction ssing orthodontic micro implant[J]. Implant Dent, 2010, 19(2):128-136.
doi: 10.1097/ID.0b013e3181cc4aa5
[2] Yao CJ, Lai EH, Chang JZ, et al. Comparison of treatment outcomes between skeletal anchorage and extraoral anchorage in adults with maxillary dentoalveolar protrusion[J]. Am J Orthod Dentofacial Orthop, 2008, 134(5):615-624.
doi: 10.1016/j.ajodo.2006.12.022
[3] Victor D, Prabhakar R, Karthikeyan MK, et al. Effectiveness of mini implants in three-dimensional control during retraction:A clinical study[J]. J Clin Diagn Res, 2014, 8(2):227-232.
[4] Antoszewska-Smith J, Sarul M, Łyczek J, et al. Effectiveness of orthodontic miniscrew implants in anchorage reinforcement during en-masse retraction: A systematic review and meta-analysis[J]. Am J Orthod Dentofacial Orthop, 2017, 151(3):440-455.
doi: 10.1016/j.ajodo.2016.08.029
[5] Jang T, Park J, Moon W, et al. Effects of acid etching and calcium chloride immersion on removal torque and bone-cutting ability of orthodontic mini-implants[J]. Am J Orthod Dentofacial Orthop, 2018, 154(1):108-114.
doi: 10.1016/j.ajodo.2017.10.032
[6] Pan C, Liu P, Tseng Y, et al. Effects of cortical bone thickness and trabecular bone density on primary stability of orthodontic miniimplants[J]. J Dent Sci, 2019, 14(4):383-388.
doi: 10.1016/j.jds.2019.06.002
[7] Tatli U, Alraawi M, Toroğlu MS. Effects of size and insertion angle of orthodontic mini-implants on skeletal anchorage[J]. Am J Orthod Dentofacial Orthop, 2019, 156(2):220-228.
doi: 10.1016/j.ajodo.2018.08.026
[8] Becker K, Pliska A, Busch C, et al. Efficacy of orthodontic mini implants for en masse retraction in the maxilla: A systematic review and meta-analysis[J]. Int J Implant Dent, 2018, 4(1):35.
doi: 10.1186/s40729-018-0144-4
[9] Gurdán Z, Szalma J. Evaluation of the success and complication rates of self-drilling orthodontic mini-implants[J]. Niger J Clin Pract, 2018, 21(5):546-552.
doi: 10.4103/njcp.njcp_105_17
[10] Li G, Yang Z, Wang T, et al. Meta-analysis dataset comparing orthodontic mini-implants and conventional anchorage reinforcement for maximum orthodontic anchorage[J/OL]. Data Brief, 2020, 32: 106010[2020-09-01]. https://doi.org/10.1016/j.dib.2020.106010.
[11] Cassetta M, Altieri F, Di Giorgio R, et al. Palatal orthodontic miniscrew insertion using a CAD-CAM surgical guide: description of a technique[J]. Int J Oral Maxillofac Surg, 2018, 47(9):1195-1198.
doi: 10.1016/j.ijom.2018.03.018
[12] Mohammed H, Wafaie K, Rizk MZ, et al. Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants: A systematic review and meta-analysis[J]. Prog Orthod, 2018, 19(1):36.
doi: 10.1186/s40510-018-0225-1 pmid: 30246217
[13] Jung M. Vertical control of a class Ⅱ deep bite malocclusion with the use of orthodontic mini-implants[J]. Am J Orthod Dentofacial Orthop, 2019, 155(2):264-275.
doi: 10.1016/j.ajodo.2018.08.016
[14] Koyama I, Iino S, Abe Y, et al. Differences between sliding mechanics with implant anchorage and straight-pull headgear and intermaxillary elastics in adults with bimaxillary protrusion[J]. Eur J Orthod, 2011, 33(2):126-131.
doi: 10.1093/ejo/cjq047
[15] Nojima LI, Nojima MDCG, Cunha ACD, et al. Mini-implant selection protocol applied to MARPE[J]. Dental Press J Orthod, 2018, 23(5):93-101.
doi: 10.1590/2177-6709.23.5.093-101.sar
[16] 欧阳莉, 周彦恒, 傅民魁, 等. 种植体支抗对高角拔牙病例垂直向控制的颌牙合面改变[J]. 中华口腔正畸学杂志, 2009, 16(1):13-18.
[17] Wang XD, Zhang JN, Liu DW, et al. Nonsurgical correction using miniscrew-assisted vertical control of a severe high angle with mandibular retrusion and gummy smile in an adult[J]. Am J Orthod Dentofacial Orthop, 2017, 151(5):978-988.
doi: 10.1016/j.ajodo.2016.04.034
[18] 覃昌焘, 韦海涛, 马琴琴, 等. 微型种植体支抗对拔牙矫治病例的垂直向控制研究[J]. 临床口腔医学杂志, 2014, 30(4):248-250.
[19] 欧阳莉, 周彦恒. 使用种植体支抗对高角病例进行垂直向控制[J]. 中华口腔正畸学杂志, 2013, 20(1):2-7.
[1] 孙现涛,何伟,刘筱菁,李自力,王兴. Delaire头影测量分析法预测正颌手术患者上颌及颏部理想矢状向位置的可行性评估[J]. 北京大学学报(医学版), 2020, 52(1): 90-96.
[2] 金珉廷,刘怡. 三维颅面水平参考平面的确定方法[J]. 北京大学学报(医学版), 2019, 51(5): 937-943.
[3] 范少轻,周彦恒. 种植体支抗整体远中移动下颌牙列治疗骨性Ⅲ类错牙合的疗效评价[J]. 北京大学学报(医学版), 2017, 49(3): 531-539.
[4] 唐志慧, 曾祥龙. 恒牙早期正常骨面型青少年上气道形态和舌骨位置的X线头影测量研究[J]. 北京大学学报(医学版), 2002, 34(2): 140-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王新宇,崔哲,和清源,邓湘宁,郭歌,冯新恒,冯杰莉. 斑点追踪技术评价中国优秀男子举重运动员心脏的改变[J]. 北京大学学报(医学版), 2021, 53(5): 832 -837 .
[2] 刘云松,周倜,叶红强. 前牙美学修复的整体策略及细节剖析[J]. 北京大学学报(医学版), 2022, 54(1): 1 -6 .
[3] 张学武. 痛风关节炎治疗中几个备受关注的问题[J]. 北京大学学报(医学版), 2021, 53(6): 1017 -1019 .
[4] 娄雪,廖莉,李兴珺,王楠,刘爽,崔若玫,徐健. 类风湿关节炎患者外周血TWEAK基因启动子区甲基化状态及其表达[J]. 北京大学学报(医学版), 2021, 53(6): 1020 -1025 .
[5] 钟华,徐丽玲,白明欣,苏茵. 类风湿关节炎患者趋化因子CXCL9和CXCL10在骨侵蚀中的作用[J]. 北京大学学报(医学版), 2021, 53(6): 1026 -1031 .
[6] 郭应禄. 夯实人才培养,实现我国泌尿外科奋斗目标[J]. 北京大学学报(医学版), 2021, 53(4): 633 -634 .
[7] 蒋青,张雨. 新形势下运动损伤特点及细胞生物治疗的应用前景和挑战[J]. 北京大学学报(医学版), 2021, 53(5): 828 -831 .
[8] 刘承,马潞林. 前入路机器人辅助前列腺根治性切除术中改善排尿控制的经验[J]. 北京大学学报(医学版), 2021, 53(4): 635 -639 .
[9] 于妍斐,何世明,吴宇财,熊盛炜,沈棋,李妍妍,杨风,何群,李学松. 延胡索酸水合酶缺陷型肾细胞癌的临床病理特征及预后[J]. 北京大学学报(医学版), 2021, 53(4): 640 -646 .
[10] 王立新, 许晓, 倪耀丰, 孙海涛, 余日月, 魏世成. 载药脂质体修饰的聚醚醚酮植入物的抑菌和骨整合性能[J]. 北京大学学报(医学版), 2021, 53(4): 758 -763 .