北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (3): 458-467. doi: 10.19723/j.issn.1671-167X.2022.03.010

• 论著 • 上一篇    下一篇

基于长短期记忆网络和Logistic回归的重症监护病房脑卒中患者院内死亡风险预测

邓宇含1,姜勇2,3,王子尧1,刘爽1,汪雨欣1,刘宝花1,*()   

  1. 1. 北京大学公共卫生学院社会医学与健康教育学系,北京 100191
    2. 国家神经系统疾病临床医学研究中心,首都医科大学附属北京天坛医院神经病学中心,北京 100050
    3. 北京大数据精准医疗高精尖创新中心(北京航空航天大学&首都医科大学),北京 100070
  • 收稿日期:2022-01-13 出版日期:2022-06-18 发布日期:2022-06-14
  • 通讯作者: 刘宝花 E-mail:baohualiu@bjmu.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFC1311700);国家重点研发计划(2018YFC1311703)

Long short-term memory and Logistic regression for mortality risk prediction of intensive care unit patients with stroke

Yu-han DENG1,Yong JIANG2,3,Zi-yao WANG1,Shuang LIU1,Yu-xin WANG1,Bao-hua LIU1,*()   

  1. 1. Department of Social Medicine and Health Education, Peking University School of Public Health, Beijing 100191, China
    2. China National Clinical Research Center for Neurological Diseases, Department of Neurology, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, China
    3. Beijing Advanced Innovation Center for Big Data-Based Precision Medicine (Beihang University & Capital Medical University), Beijing 100070, China
  • Received:2022-01-13 Online:2022-06-18 Published:2022-06-14
  • Contact: Bao-hua LIU E-mail:baohualiu@bjmu.edu.cn
  • Supported by:
    National Key R & D Program of China(2018YFC1311700);National Key R & D Program of China(2018YFC1311703)

摘要:

目的: 基于引入注意力机制的长短期记忆网络(long short-term memory,LSTM)和L1正则化的Logistic回归筛选变量,再通过传统的Logistic回归建立重症监护病房(intensive care unit,ICU)脑卒中患者院内死亡风险预测模型并评价模型效果。方法: 选取重症医学信息数据库(Medical Information Mart for Intensive Care-Ⅳ,MIMIC-Ⅳ)中的脑卒中患者作为研究对象,以是否发生院内死亡作为结局变量,备选预测因子包括人口学特征、合并症、入院48 h内实验室检查和生命体征检查等。将数据根据结局指标以8 ∶2的比例随机进行10次训练集和测试集的划分,在训练集上构建LSTM和L1正则化的Logistic回归模型,在测试集上选取重要程度排名前10的变量的并集纳入Logistic回归建立预测模型,以受试者工作特征曲线下面积(area under curve, AUC)、灵敏度、特异度、预测准确度为指标对模型进行评价,并与未预先进行变量筛选的前进法Logistic回归模型的预测效果进行比较。结果: 共纳入2 755例脑卒中患者的2 979条ICU入院记录,其中院内死亡记录占17.66%。两个变量筛选模型中,L1正则化的Logistic回归模型的AUC显著优于LSTM模型(0.819±0.031 vs. 0.760±0.018, P < 0.001),两个模型中重要程度均位于前10的变量包括年龄、血糖和尿素氮。最终预测模型的AUC为0.85,灵敏度为85.98%,特异度为71.74%,预测准确率为74.26%,优于未预先进行变量筛选的前进法Logistic回归模型。结论: 用引入注意力机制的LSTM和L1正则的Logistic回归筛选出的变量的预测效果较好,具有一定的临床价值。

关键词: 卒中, 预后, 预测, LSTM, Logistic模型

Abstract:

Objective: To select variables related to mortality risk of stroke patients in intensive care unit (ICU) through long short-term memory (LSTM) with attention mechanisms and Logistic regression with L1 norm, and to construct mortality risk prediction model based on conventional Logistic regression with important variables selected from the two models and to evaluate the model performance. Methods: Medical Information Mart for Intensive Care (MIMIC)-Ⅳ database was retrospectively analyzed and the patients who were primarily diagnosed with stroke were selected as study population. The outcome was defined as whether the patient died in hospital after admission. Candidate predictors included demogra-phic information, complications, laboratory tests and vital signs in the initial 48 h after ICU admission. The data were randomly divided into a training set and a test set for ten times at a ratio of 8 ∶2. In training sets, LSTM with attention mechanisms and Logistic regression with L1 norm were constructed to select important variables. In the test sets, the mean importance of variables of ten times was used as a reference to pick out the top 10 variables in each of the two models, and then these variables were included in conventional Logistic regression to build the final prediction model. Model evaluation was based on the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy. And the model performance was compared with the forward Logistic regression model which hadn't conducted variable selection previously. Results: A total of 2 755 patients with 2 979 ICU admission records were included in the analysis, of which 526 recorded deaths. The AUC of Logistic regression model with L1 norm was statistically better than that of LSTM with attention mechanisms (0.819±0.031 vs. 0.760±0.018, P < 0.001). Age, blood glucose, and blood urea nitrogen were at the top ten important variables in both of the two models. AUC, sensitivity, specificity, and accuracy of Logistic regression models were 0.85, 85.98%, 71.74% and 74.26%, respectively. And the final prediction model was superior to forward Logistic regression model. Conclusion: The variables selected by Logistic regression with L1 norm and LSTM with attention mechanisms had good prediction performance, which showed important implications on the mortality prediction of stroke patients in ICU.

Key words: Stroke, Prognosis, Forecasting, LSTM, Logistic models

中图分类号: 

  • R743.3

图1

研究对象的纳入流程图"

图2

单个LSTM单元示意图"

表1

根据院内死亡情况分组的ICU脑卒中患者的变量特征"

Characteristic Total (n=2 979) Outcome
Death (n=526) Survival (n=2 453) P value
Age/years 69 (56, 80) 75 (64, 83) 67 (55, 79) < 0.001
Gender 0.737
  Male 1 532 (51.4) 274 (52.1) 1 258 (51.3)
  Female 1 447 (48.6) 252 (47.9) 1 195 (48.7)
Ethnicity < 0.001
  White 1 784 (59.9) 251 (47.7) 1 533 (62.5)
  Black American 306 (10.3) 61 (11.6) 245 (10.0)
  Asian 112 (3.8) 23 (4.4) 89 (3.6)
  Hispanic 111 (3.7) 15 (2.9) 96 (3.9)
  Others/unknown 666 (22.4) 176 (33.5) 490 (20.0)
Stroke subtype 0.270
  Ischemic stroke 1 185 (39.8) 198 (37.6) 987 (40.2)
  Hemorrhagic stroke 1 794 (60.2) 328 (62.4) 1 466 (59.8)
AFIB < 0.001
  Yes 367 (12.3) 106 (20.2) 261 (10.6)
  No 2 612 (87.7) 420 (79.8) 2 192 (89.4)
CHF < 0.001
  Yes 216 (7.3) 65 (12.4) 151 (6.2)
  No 2 763 (92.7) 461 (87.6) 2 302 (93.8)
COPD 0.770
  Yes 212 (7.1) 39 (7.4) 173 (7.1)
  No 2 767 (92.9) 487 (92.6) 2 280 (92.9)
Diabetes < 0.001
  Yes 333 (11.2) 82 (15.6) 251 (10.2)
  No 2 646 (88.8) 444 (84.4) 2 202 (89.8)
Hyperlipidemia 0.055
  Yes 1 181 (39.6) 189 (35.9) 992 (40.4)
  No 1 798 (60.4) 337 (64.1) 1 461 (59.6)
Hypertension 0.002
  Yes 949 (31.9) 137 (26.0) 812 (33.1)
  No 2 030 (68.1) 389 (74.0) 1 641 (66.9)
Liver disease < 0.001
  Yes 120 (4.0) 39 (7.4) 81 (3.3)
  No 2 859 (96.0) 487 (92.6) 2 372 (96.7)
PVD 0.052
  Yes 77 (2.6) 20 (3.8) 57 (2.3)
  No 2 902 (97.4) 506 (96.2) 2 396 (97.7)
Rental disease < 0.001
  Yes 526 (17.7) 141 (26.8) 385 (15.7)
  No 2 453 (82.3) 385 (73.2) 2 068 (84.3)
Respiratory failure < 0.001
  Yes 814 (27.3) 278 (52.9) 536 (21.9)
  No 2 165 (72.7) 248 (47.1) 1 917 (78.1)
HR/(beats/min) 79.3 (70.5, 88.2) 84.8 (75.7, 94.5) 78.2 (69.5, 86.8) < 0.001
Respiratory rate/(times/min) 18.6 (16.7, 20.9) 19.9 (17.7, 22.4) 18.4 (16.6, 20.5) < 0.001
SpO2/% 97.2 (96.0, 98.4) 98.0 (96.6, 99.0) 97.0 (95.9, 98.2) < 0.001
MBP/mmHg 85.9 (77.7, 92.6) 83.9 (75.6, 90.0) 86.4 (78.1, 93.3) < 0.001
DBP/mmHg 70.7 (62.5, 77.3) 68.6 (59.7, 75.0) 71.1 (63.2, 77.9) < 0.001
SBP/mmHg 130.9 (120.6, 140.7) 130.9 (120.0, 140.0) 130.9 (120.7, 140.9) 0.286
PT/s 12.9 (12.1, 13.6) 13.3 (12.4, 14.2) 12.8 (12.0, 13.4) < 0.001
INR 1.2 (1.1, 1.2) 1.2 (1.1, 1.3) 1.2 (1.1, 1.2) < 0.001
RDW/% 13.9 (13.3, 14.7) 14.2 (13.6, 15.3) 13.8 (13.2, 14.6) < 0.001
Hemoglobin/(g/dL) 11.8 (10.6, 12.9) 11.5 (10.3, 12.5) 11.8 (10.7, 12.9) < 0.001
WBC/(×109/L) 10.4 (8.7, 12.7) 11.8 (9.8, 15.0) 10.2 (8.6, 12.3) < 0.001
Platelet count/(×109/L) 207.6 (172.6, 248.0) 196.2 (157.0, 240.2) 209.9 (175.1, 249.9) < 0.001
Hematocrit/% 35.5 (32.3, 38.5) 34.7 (31.3, 37.7) 36.7 (32.6, 38.6) < 0.001
Glucose/(mg/dL) 127.4 (112.3, 147.2) 141.5 (124.5, 168.9) 124.8 (110.8, 142.5) < 0.001
Anion gap/(mmol/L) 14.0 (12.6, 15.4) 14.4 (12.9, 16.2) 13.9 (12.6, 15.3) < 0.001
Bicarbonate/(mmol/L) 23.2 (21.7, 24.9) 22.8 (20.8, 24.8) 23.3 (21.9, 24.9) < 0.001
Creatinine/(mg/dL) 0.9 (0.7, 1.1) 1.0 (0.8, 1.3) 0.9 (0.7, 1.0) < 0.001
Urea nitrogen/(mg/dL) 15.6 (12.2, 20.8) 18.8 (13.9, 26.4) 15.0 (11.9, 19.8) < 0.001
Chloride/(mmol/L) 105.6 (103.1, 107.8) 106.9 (103.9, 110.8) 105.3 (103.0, 107.4) < 0.001
Potassium/(mmol/L) 3.9 (3.7, 4.1) 3.9 (3.7, 4.2) 3.9 (3.7, 4.1) 0.011
Sodium/(mmol/L) 140.4 (138.5, 142.4) 141.5 (139.1, 145.2) 140.2 (138.4, 142.1) < 0.001

图3

变量筛选模型的受试者工作特征曲线"

图4

基于引入注意力机制的LSTM的变量重要性排序"

图5

基于L1正则Logistic回归的变量重要性排序"

表2

基于Logistic回归的预测模型"

Variable β SE Wald χ2 OR (95%CI)
Intercept -8.07 1.06 58.50
Age 3.42 0.38 82.52 30.81 (14.71, 64.55)
Ethnicity (ref: White)
  Black American -0.08 0.18 0.21 1.11 (0.74, 1.69)
  Asian -0.19 0.29 0.44 1.00 (0.49, 2.05)
  Hispanic -0.01 0.24 0.01 1.19 (0.66, 2.15)
  Others/unknown 0.48 0.14 12.38 1.96 (1.47, 2.60)
Hemoglobin (SD) -1.08 0.61 3.11 0.34 (0.10, 1.13)
Glucose (mean) 3.33 0.56 35.01 27.95 (9.28, 84.24)
Anion gap (mean) 2.24 0.78 8.38 9.43 (2.06, 43.07)
Bicarbonate (mean) -1.37 0.60 5.18 0.25 (0.08, 0.83)
Bicarbonate (SD) 0.77 0.48 2.56 2.17 (0.84, 5.59)
Urea nitrogen (SD) -0.98 0.71 1.89 0.37 (0.09, 1.52)
Sodium (max) 5.59 0.67 69.05 268.61 (71.81, 1 000.00)
SpO2 (mean) 3.72 1.55 5.80 41.37 (2.00, 855.38)
Heart rate (min) 0.54 0.59 0.81 1.71 (0.53, 5.49)
Hyperlipidemia (ref: no) -0.24 0.07 13.83 0.62 (0.48, 0.80)
CHF (ref: no) 0.25 0.10 6.13 1.66 (1.11, 2.48)
Liver disease (ref: no) 0.50 0.13 15.90 2.73 (1.67, 4.47)
Respiratory failure (ref: no) 0.55 0.06 74.68 3.02 (2.35, 3.89)

图6

两个Logistic回归模型的受试者工作特征曲线"

1 Katan M , Luft A . Global burden of stroke[J]. Semin Neurol, 2018, 38 (2): 208- 211.
doi: 10.1055/s-0038-1649503
2 Rochmah TN , Rahmawati IT , Dahlui M , et al. Economic burden of stroke disease: A systematic review[J]. Int J Environ Res Public Health, 2021, 18 (14): 7552.
doi: 10.3390/ijerph18147552
3 Sarti C , Rastenyte D , Cepaitis Z , et al. International trends in mortality from stroke, 1968 to 1994[J]. Stroke, 2000, 31 (7): 1588- 1601.
doi: 10.1161/01.STR.31.7.1588
4 Handschu R , Haslbeck M , Hartmann A , et al. Mortality prediction in critical care for acute stroke: Severity of illness-score or coma-scale?[J]. J Neurol, 2005, 252 (10): 1249- 1254.
doi: 10.1007/s00415-005-0853-5
5 Ryan L , Lam C , Mataraso S , et al. Mortality prediction model for the triage of COVID-19, pneumonia, and mechanically ventilated ICU patients: A retrospective study[J]. Ann Med Surg (Lond), 2020, 59, 207- 216.
doi: 10.1016/j.amsu.2020.09.044
6 Nemati S , Holder A , Razmi F , et al. An interpretable machine learning model for accurate prediction of sepsis in the ICU[J]. Crit Care Med, 2018, 46 (4): 547- 553.
doi: 10.1097/CCM.0000000000002936
7 LeCun Y , Bengio Y , Hinton G . Deep learning[J]. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539
8 Cheng JZ , Ni D , Chou YH , et al. Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans[J]. Sci Rep, 2016, 6, 24454.
doi: 10.1038/srep24454
9 Kooi T , Litjens G , van Ginneken B , et al. Large scale deep learning for computer aided detection of mammographic lesions[J]. Med Image Anal, 2017, 35, 303- 312.
doi: 10.1016/j.media.2016.07.007
10 Choi E , Bahadori MT , Schuetz A , et al. Doctor AI: Predicting clinical events via recurrent neural networks[J]. JMLR Workshop Conf Proc, 2016, 56, 301- 318.
11 Hochreiter S , Schmidhuber J . Long short-term memory[J]. Neural Comput, 1997, 9 (8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
12 Thorsen-Meyer HC , Nielsen AB , Nielsen AP , et al. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: A retrospective study of high-frequency data in electronic patient records[J]. Lancet Digit Health, 2020, 2 (4): e179- e191.
doi: 10.1016/S2589-7500(20)30018-2
13 Xia J , Pan S , Zhu M , et al. A long short-term memory ensemble approach for improving the outcome prediction in intensive care unit[J]. Comput Math Methods Med, 2019, 2019, 8152713.
14 Maheshwari S , Agarwal A , Shukla A , et al. A comprehensive evaluation for the prediction of mortality in intensive care units with LSTM networks: Patients with cardiovascular disease[J]. Biomed Tech (Berl), 2020, 65 (4): 435- 446.
doi: 10.1515/bmt-2018-0206
15 Ho LV , Aczon M , Ledbetter D , et al. Interpreting a recurrent neural network's predictions of ICU mortality risk[J]. J Biomed Inform, 2021, 114, 103672.
doi: 10.1016/j.jbi.2021.103672
16 王琦琦, 于石成, 亓晓, 等. Logistic族回归及其应用[J]. 中华预防医学杂志, 2019, 53 (9): 955- 960.
17 Jhou HJ , Chen PH , Yang LY , et al. Plasma anion gap and risk of in-hospital mortality in patients with acute ischemic stroke: Analysis from the MIMIC-Ⅳ database[J]. J Pers Med, 2021, 11 (10): 1004.
doi: 10.3390/jpm11101004
18 Zhao N , Hu W , Wu Z , et al. The red blood cell distribution width-albumin ratio: A promising predictor of mortality in stroke patients[J]. Int J Gen Med, 2021, 14, 3737- 3747.
doi: 10.2147/IJGM.S322441
19 邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2020: 141- 145.
20 Kaji DA , Zech JR , Kim JS , et al. An attention based deep lear-ning model of clinical events in the intensive care unit[J]. PLoS One, 2019, 14 (2): e0211057.
doi: 10.1371/journal.pone.0211057
21 Lopez Bernal J , Soumerai S , Gasparrini A . A methodological framework for model selection in interrupted time series studies[J]. J Clin Epidemiol, 2018, 103, 82- 91.
doi: 10.1016/j.jclinepi.2018.05.026
22 Yu Y , Si X , Hu C , et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Comput, 2019, 31 (7): 1235- 1270.
doi: 10.1162/neco_a_01199
23 Gandin I , Scagnetto A , Romani S , et al. Interpretability of time-series deep learning models: A study in cardiovascular patients admitted to intensive care unit[J]. J Biomed Inform, 2021, 121, 103876.
doi: 10.1016/j.jbi.2021.103876
24 Weimar C , Ziegler A , Konig IR , et al. Predicting functional outcome and survival after acute ischemic stroke[J]. J Neurol, 2002, 249 (7): 888- 895.
doi: 10.1007/s00415-002-0755-8
25 Koyama T , Uchiyama Y , Domen K . Outcome in stroke patients is associated with age and fractional anisotropy in the cerebral peduncles: A multivariate regression study[J]. Prog Rehabil Med, 2020, 5, 20200006.
26 Duarte E , Marco E , Muniesa JM , et al. Early detection of non-ambulatory survivors six months after stroke[J]. NeuroRehabilitation, 2010, 26 (4): 317- 323.
doi: 10.3233/NRE-2010-0568
27 Fuentes B , Castillo J , San Jose B , et al. The prognostic value of capillary glucose levels in acute stroke[J]. Stroke, 2009, 40 (2): 562- 568.
doi: 10.1161/STROKEAHA.108.519926
28 Baird TA , Parsons MW , Phanh T , et al. Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome[J]. Stroke, 2003, 34 (9): 2208- 2214.
doi: 10.1161/01.STR.0000085087.41330.FF
29 Förstermann U , Münzel T . Endothelial nitric oxide synthase in vascular disease: From marvel to menace[J]. Circulation, 2006, 113 (13): 1708- 1714.
doi: 10.1161/CIRCULATIONAHA.105.602532
30 Virley D , Hadingham SJ , Roberts JC , et al. A new primate model of focal stroke: Endothelin-1-induced middle cerebral artery occlusion and reperfusion in the common marmoset[J]. J Cereb Blood Flow Metab, 2004, 24 (1): 24- 41.
doi: 10.1097/01.WCB.0000095801.98378.4A
31 Martini SR , Kent TA . Hyperglycemia in acute ischemic stroke: A vascular perspective[J]. J Cereb Blood Flow Metab, 2007, 27 (3): 435- 451.
doi: 10.1038/sj.jcbfm.9600355
32 You S , Zheng D , Zhong C , et al. Prognostic significance of blood urea nitrogen in acute ischemic stroke[J]. Circ J, 2018, 82 (2): 572- 578.
doi: 10.1253/circj.CJ-17-0485
33 Cheng J , Sun J , Yao K , et al. A variable selection method based on mutual information and variance inflation factor[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2022, 268, 120652.
doi: 10.1016/j.saa.2021.120652
34 Ge W , Huh JW , Park YR , et al. An interpretable ICU mortality prediction model based on Logistic regression and recurrent neural networks with LSTM units[J]. AMIA Annu Symp Proc, 2018, 2018, 460- 469.
35 Koppe G , Meyer-Lindenberg A , Durstewitz D . Deep learning for small and big data in psychiatry[J]. Neuropsychopharmacology, 2021, 46 (1): 176- 190.
doi: 10.1038/s41386-020-0767-z
[1] 杨若彤,王梦莹,李春男,于欢,王小文,吴俊慧,王斯悦,王伽婷,陈大方,吴涛,胡永华. 缺血性脑卒中全基因组关联研究提示阳性基因位点与睡眠行为的交互作用[J]. 北京大学学报(医学版), 2022, 54(3): 412-420.
[2] 吴俊慧,武轶群,吴瑶,王紫荆,吴涛,秦雪英,王梦莹,王小文,王伽婷,胡永华. 北京城镇职工2型糖尿病患者缺血性脑卒中发病率及主要危险因素[J]. 北京大学学报(医学版), 2022, 54(2): 249-254.
[3] 蓝璘,贺洋,安金刚,张益. 颧骨缺损不同修复重建方法和预后的回顾性分析[J]. 北京大学学报(医学版), 2022, 54(2): 356-362.
[4] 袁临天,马利沙,刘润园,齐伟,张栌丹,王贵燕,王宇光. 计算机模拟亚甲基蓝与牙龈卟啉单胞菌部分蛋白的分子对接[J]. 北京大学学报(医学版), 2022, 54(1): 23-30.
[5] 任国勇,吴雪梅,李颖,李婕妤,孙伟平,黄一宁. 大血管闭塞性脑卒中亚急性期磁敏感血管征的表现[J]. 北京大学学报(医学版), 2021, 53(6): 1133-1138.
[6] 王飞,朱翔,贺蓓,朱红,沈宁. 自发缓解的滤泡性细支气管炎伴非特异性间质性肺炎1例报道并文献复习[J]. 北京大学学报(医学版), 2021, 53(6): 1196-1200.
[7] 高伟波,石茂静,张海燕,吴春波,朱继红. 显著高铁蛋白血症与噬血细胞性淋巴组织细胞增多症的相互关系[J]. 北京大学学报(医学版), 2021, 53(5): 921-927.
[8] 张梅香,史文芝,刘建新,王春键,李燕,王蔚,江滨. MLL-AF6融合基因阳性急性髓系白血病的临床特征及预后[J]. 北京大学学报(医学版), 2021, 53(5): 915-920.
[9] 蒋艳芳,王健,王永健,刘佳,裴殷,刘晓鹏,敖英芳,马勇. 前交叉韧带翻修重建术后中长期临床疗效及影响因素[J]. 北京大学学报(医学版), 2021, 53(5): 857-863.
[10] 肖若陶,刘承,徐楚潇,何为,马潞林. 术前血小板参数与局部进展期肾细胞癌预后[J]. 北京大学学报(医学版), 2021, 53(4): 647-652.
[11] 于妍斐,何世明,吴宇财,熊盛炜,沈棋,李妍妍,杨风,何群,李学松. 延胡索酸水合酶缺陷型肾细胞癌的临床病理特征及预后[J]. 北京大学学报(医学版), 2021, 53(4): 640-646.
[12] 赵勋,颜野,黄晓娟,董靖晗,刘茁,张洪宪,刘承,马潞林. 癌栓粘连血管壁对非转移性肾细胞癌合并下腔静脉癌栓患者手术及预后的影响[J]. 北京大学学报(医学版), 2021, 53(4): 665-670.
[13] 陈怀安,刘硕,李秀君,王哲,张潮,李凤岐,苗文隆. 炎症生物标志物对输尿管尿路上皮癌患者预后预测的临床价值[J]. 北京大学学报(医学版), 2021, 53(2): 302-307.
[14] 刘世博,高辉,冯元春,李静,张彤,万利,刘燕鹰,李胜光,罗成华,张学武. 腹膜后纤维化致肾盂积水的临床分析:附17例报道[J]. 北京大学学报(医学版), 2020, 52(6): 1069-1074.
[15] 候越,赵旭彤,谢志颖,袁云,王朝霞. 线粒体DNA 8344 A>G突变导致的MELAS/MERRF/Leigh重叠综合征[J]. 北京大学学报(医学版), 2020, 52(5): 851-855.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郭岩, 谢铮. 用一代人时间弥合差距——健康社会决定因素理论及其国际经验[J]. 北京大学学报(医学版), 2009, 41(2): 125 -128 .
[2] 成刚, 钱振华, 胡军. 艾滋病项目自愿咨询检测的技术效率分析[J]. 北京大学学报(医学版), 2009, 41(2): 135 -140 .
[3] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[4] 袁惠燕, 张苑, 范田园. 离子交换型栓塞微球及其载平阳霉素的制备与性质研究[J]. 北京大学学报(医学版), 2009, 41(2): 217 -220 .
[5] 徐莉, 孟焕新, 张立, 陈智滨, 冯向辉, 释栋. 侵袭性牙周炎患者血清中抗牙龈卟啉单胞菌的IgG抗体水平的研究[J]. 北京大学学报(医学版), 2009, 41(1): 52 -55 .
[6] Jian-wei GU, Emily YOUNG, Zhi-jun PAN, Kevan B. TUCKER, Megan SHPARAGO, Min HUANG, Amelia Purser BAILEY. SD大鼠长期高盐饮食可导致其高血压并改变肾细胞因子基因表达谱[J]. 北京大学学报(医学版), 2009, 41(5): 505 -515 .
[7] 李宏亮*, 安卫红*, 赵扬玉, 朱曦. 妊娠合并高脂血症性胰腺炎行血液净化治疗1例[J]. 北京大学学报(医学版), 2009, 41(5): 599 -601 .
[8] 赵奇, 薛世华, 刘志勇, 吴凌云. 同向施压测定自酸蚀与全酸蚀粘接系统粘接强度[J]. 北京大学学报(医学版), 2010, 42(1): 82 -84 .
[9] 钱英, 王玉凤. 共患病对注意缺陷多动障碍执行功能的影响[J]. 北京大学学报(医学版), 2007, 39(3): 329 -332 .
[10] 丰雷, 程嘉, 王玉凤. 注意缺陷多动障碍儿童的运动协调功能[J]. 北京大学学报(医学版), 2007, 39(3): 333 -336 .