北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (5): 874-883. doi: 10.19723/j.issn.1671-167X.2022.05.015

• 论著 • 上一篇    下一篇

中国人群遗传性周围神经病的致病基因分布

刘小璇1,段晓慧2,张朔1,孙阿萍1,张英爽1,樊东升1,*()   

  1. 1. 北京大学第三医院神经内科,北京 100191
    2. 中日友好医院神经内科,北京 100029
  • 收稿日期:2022-07-02 出版日期:2022-10-18 发布日期:2022-10-14
  • 通讯作者: 樊东升 E-mail:dsfan@sina.com
  • 作者简介:樊东升,北京大学第三医院神经内科主任,北京大学医学部神经病学系主任,神经退行性疾病生物标志物研究及转化北京市重点实验室主任,国家卫生健康委员会神经科学重点实验室副主任及学术委员会副主任,神经科学教育部重点实验室学术委员会副主任,国家神经系统疾病医疗质量控制中心运动神经元疾病医疗质量工作组组长,中国残疾人康复协会罕见病康复专业委员会主任委员,《中华脑血管病杂志(电子版)》总编辑。
      曾获教育部科技进步一等奖、自然科学二等奖等,所承担的北京大学《神经病学》获“国家精品课程”。发表论文600余篇,H指数46,被引9 321次;其中SCI论文总影响因子1 010.5。2017年当选第八届国家卫生和计划生育委员会(现为国家卫生健康委员会)突出贡献专家,2022年当选美国科学家荣誉学会(Sigma Xi)会员。荣获第四届“国之名医·卓越建树奖”(2020)、第六届“荣耀医者·人文情怀奖”(2021)、国家卫生健康委员会脑卒中防治工程委员会“杰出贡献奖”(2021)、中国微循环学会“中国神经变性病领域特殊贡献奖”(2021)等
  • 基金资助:
    北京大学临床医学+X青年专项(PKU2021LCXQ019);北京大学第三医院队列建设项目(BYSYDL2021007)

Genetic distribution in Chinese patients with hereditary peripheral neuropathy

Xiao-xuan LIU1,Xiao-hui DUAN2,Shuo ZHANG1,A-ping SUN1,Ying-shuang ZHANG1,Dong-sheng FAN1,*()   

  1. 1. Department of Neurology, Peking University Third Hospital, Beijing 100191, China
    2. Department of Neurology, China-Japan Friendship Hospital, Beijing 100029, China
  • Received:2022-07-02 Online:2022-10-18 Published:2022-10-14
  • Contact: Dong-sheng FAN E-mail:dsfan@sina.com
  • Supported by:
    Peking University Clinical Medicine Plus X-Youth Scholars Project(PKU2021LCXQ019);Peking University Third Hospital Cohort Study Project(BYSYDL2021007)

摘要:

目的: 分析中国汉族人群遗传性周围神经病(hereditary peripheral neuropathy,HPN)致病基因的分布特点,探讨HPN与相关疾病的潜在发病机制和治疗前景。方法: 收集2007年1月到2022年5月在北京大学第三医院和中日友好医院诊治的HPN先证者666个,用多重连接探针扩增技术确定PMP22重复和缺失突变后,用二代测序基因包或全外显子组测序,Sanger法进行一代验证,分析比较结果。结果: 腓骨肌萎缩症(Charcot-Marie-Tooth,CMT)在HPN中所占比例最高,为74.3%(495/666),其中69.1%(342/495)的患者获得基因确诊。最常见的基因突变为PMP22重复、MFN2GJB1突变,占CMT总体确诊患者的71.3%(244/342)。遗传性运动神经病(hereditary motor neuropathy,HMN)所占比例为16.1%(107/666),43%(46/107)为基因确诊,最常见的基因突变为HSPB1、t-RNA合成酶相关基因(aminoacyl-tRNA synthetases)和SORD突变,占HMN总体确诊患者的50%(23/46)。HMN的部分基因可以合并多种临床表型,如HSPB1GARSIGHMBP2可同时引起HMN和CMT,HMN叠加综合征的患者与肌萎缩侧索硬化(KIF5AFIG4DCTN1SETXVRK1)、遗传性痉挛性截瘫(KIF5AZFYVE26BSCL2)和脊肌萎缩症(MORC2IGHMBP2DNAJB2)有共同的致病基因。遗传性感觉自主神经病(hereditary sensory and autosomal neuropathy,HSAN)在HPN中所占的比例较小,为2.6%(17/666),最常见的致病基因为SPTLC1突变。引起遗传性淀粉样周围神经病的基因主要是TTR,本研究中最常见的基因突变位点是p.A117S和p.V50M,表现为晚发和比较突出的自主神经受累。结论: CMT和HMN是最常见的HPN,HMN与CMT2的致病基因有很多交叉,部分HMN致病基因与肌萎缩侧索硬化、遗传性痉挛性截瘫和脊肌萎缩症有重叠,提示不同疾病之间可能存在潜在的共同致病通路。

关键词: 遗传性感觉和运动神经病, 基因, 中国

Abstract:

Objective: To analyze the distribution characteristics of hereditary peripheral neuropathy (HPN) pathogenic genes in Chinese Han population, and to explore the potential pathogenesis and treatment prospects of HPN and related diseases. Methods: Six hundred and fifty-six index patients with HPN were enrolled in Peking University Third Hospital and China-Japan Friendship Hospital from January 2007 to May 2022. The PMP22 duplication and deletion mutations were screened and validated by multiplex ligation probe amplification technique. The next-generation sequencing gene panel or whole exome sequencing was used, and the suspected genes were validated by Sanger sequencing. Results: Charcot-Marie-Tooth (CMT) accounted for 74.3% (495/666) of the patients with HPN, of whom 69.1% (342/495) were genetically confirmed. The most common genes of CMT were PMP22 duplication, MFN2 and GJB1 mutations, which accounted for 71.3% (244/342) of the patients with genetically confirmed CMT. Hereditary motor neuropathy (HMN) accounted for 16.1% (107/666) of HPN, and 43% (46/107) of HPN was genetically confirmed. The most common genes of HMN were HSPB1, aminoacyl tRNA synthetases and SORD mutations, which accounted for 56.5% (26/46) of the patients with genetically confirmed HMN. Most genes associated with HMN could cause different phenotypes. HMN and CMT shared many genes (e.g. HSPB1, GARS, IGHMBP2). Some genes associated with dHMN-plus shared genes associated with amyotrophic lateral sclerosis (KIF5A, FIG4, DCTN1, SETX, VRK1), hereditary spastic paraplegia (KIF5A, ZFYVE26, BSCL2) and spinal muscular atrophy (MORC2, IGHMBP, DNAJB2), suggesting that HMN was a continuum rather than a distinct entity. Hereditary sensor and autosomal neuropathy (HSAN) accounted for a small proportion of 2.6% (17/666) in HPN. The most common pathogenic gene was SPTLC1 mutation. TTR was the main gene causing hereditary amyloid peripheral neuropathy. The most common types of gene mutations were p.A117S and p.V50M. The symptoms were characterized by late-onset and prominent autonomic nerve involvement. Conclusion: CMT and HMN are the most common diseases of HPN. There is a large overlap between HMN and motor-CMT2 pathogenic genes, and some HMN pathogenic genes overlap with amyotrophic lateral sclerosis, hereditary spastic hemiplegia and spinal muscular atrophy, suggesting that there may be a potential common pathogenic pathway between different diseases.

Key words: Hereditary sensory and motor neuropathy, Genes, China

中图分类号: 

  • R741

图1

遗传性周围神病的疾病构成分布"

表1

HPN各临床类型的流行病学资料"

Phenotype n (%) Age of onset/years Age of examination/years Disease course/years CMTNS-v2
HPN 666 (100) 24.9±17.6 34.3±17.8 9.0±9.4 11.3±5.3
  CMT 495 (74.3) 24.6±18.0 33.4±17.2 8.7±9.0 12.2±5.6
  HMN 107 (16.1) 25.6±17.0 35.4±18.2 9.4±9.5 8.9±5.0
  HNPP 39 (5.9) 27.6±11.0 32.4±12.2 4.4±2.5 8.4±2.9
  HSAN 17 (2.6) 31.5±11.0 38.4±15.2 10.4±9.5 11.8±9.4
  FAP 7 (1.1) 52 (11-78) 55 (12-83) 5.4±2.5 16.8±9.5
  Refsum 1 25 35 10 16

图2

CMT1A患者的神经活检"

图3

CMT(A)和HMN(B)的基因分布图"

图4

HMN患者的神经活检"

图5

HNPP患者的神经活检"

图6

FAP患者的神经活检"

表2

可以引起多种临床表型的基因"

Gene CMT1 CMT2 HMN ALS HSP SMA
PMP22 CMT1A, CMT1E, DSS, HNPP
MPZ CMT1B, DSS CMT2J
HSPB1 CMT2F HMN2B
GARS CMT2D HMN5A
IGHMBP2 CMT2S HMN6
HSPB8 CMT2L HMN2A
KIF5A
DCTN1
FIG4 CMT4J
MORC2 CMT2Z
DYNC1H1 CMT2O
SPTLC1 HSAN1
1 Ghosh S , Tourtellotte WG . The complex clinical and genetic landscape of hereditary peripheral neuropathy[J]. Annu Rev Pathol, 2021, 16, 487- 509.
doi: 10.1146/annurev-pathol-030320-100822
2 Bansagi B , Griffin H , Whittaker RG , et al. Genetic heterogeneity of motor neuropathies[J]. Neurology, 2017, 88 (13): 1226- 1234.
doi: 10.1212/WNL.0000000000003772
3 Rossor AM , Polke JM , Houlden H , et al. Clinical implications of genetic advances in Charcot-Marie-Tooth disease[J]. Nat Rev Neurol, 2013, 9 (10): 562- 571.
doi: 10.1038/nrneurol.2013.179
4 Previtali SC , Zhao E , Lazarevic D , et al. Expanding the spectrum of genes responsible for hereditary motor neuropathies[J]. J Neurol Neurosurg Psychiatry, 2019, 90 (10): 1171- 1179.
doi: 10.1136/jnnp-2019-320717
5 Beijer D , Baets J . The expanding genetic landscape of hereditary motor neuropathies[J]. Brain, 2020, 143 (12): 3540- 3563.
doi: 10.1093/brain/awaa311
6 Klein CJ . Charcot-Marie-Tooth disease and other hereditary neuropathies[J]. Continuum (Minneap Minn), 2020, 26 (5): 1224- 1256.
7 Magy L , Mathis S , Le Masson G , et al. Updating the classification of inherited neuropathies: Results of an international survey[J]. Neurology, 2018, 90 (10): e870- e876.
doi: 10.1212/WNL.0000000000005074
8 Beaudin M , Klein CJ , Rouleau GA , et al. Systematic review of autosomal recessive ataxias and proposal for a classification[J]. Cerebellum Ataxias, 2017, 4, 3.
doi: 10.1186/s40673-017-0061-y
9 Murphy SM , Herrmann DN , McDermott MP , et al. Reliability of the CMT neuropathy score (second version) in Charcot-Marie-Tooth disease[J]. J Peripher Nerv Syst, 2011, 16 (3): 191- 198.
doi: 10.1111/j.1529-8027.2011.00350.x
10 Padilha JPD , Brasil CS , Hoefel AML , et al. Diagnostic yield of targeted sequential and massive panel approaches for inherited neuropathies[J]. Clin Genet, 2020, 98 (2): 185- 190.
doi: 10.1111/cge.13793
11 Richards S , Aziz N , Bale S , et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17 (5): 405- 424.
doi: 10.1038/gim.2015.30
12 Xie Y , Lin Z , Liu L , et al. Genotype and phenotype distribution of 435 patients with Charcot-Marie-Tooth from central south China[J]. Eur J Neurol, 2021, 28 (11): 3774- 3783.
doi: 10.1111/ene.15024
13 Vaeth S , Christensen R , Dunϕ M , et al. Genetic analysis of Charcot-Marie-Tooth disease in Denmark and the implementation of a next generation sequencing platform[J]. Eur J Med Genet, 2019, 62 (1): 1- 8.
doi: 10.1016/j.ejmg.2018.04.003
14 刘小璇, 孙阿萍, 段晓慧, 等. 中国人群腓骨肌萎缩症的致病基因分布对比研究——14年队列观察[J]. 中华神经科杂志, 2022, 55 (5): 481- 489.
doi: 10.3760/cma.j.cn113694-20211102-00762
15 Cortese A , Zhu Y , Rebelo AP , et al. Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes[J]. Nat Genet, 2020, 2 (5): 473- 481.
16 Sevilla T , Lupo V , Martínez-Rubio D , et al. Mutations in the MORC2 gene cause axonal Charcot-Marie-Tooth disease[J]. Brain, 2016, 139 (Pt 1): 62- 72.
17 Liu X , Duan X , Zhang Y , et al. Molecular analysis and clinical diversity of distal hereditary motor neuropathy[J]. Eur J Neurol, 2020, 27 (7): 1319- 1326.
doi: 10.1111/ene.14260
18 Evgrafov OV , Mersiyanova I , Irobi J , et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy[J]. Nat Genet, 2004, 36 (6): 602- 606.
doi: 10.1038/ng1354
19 Antonellis A , Ellsworth RE , Sambuughin N , et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type Ⅴ[J]. Am J Hum Genet, 2003, 72 (5): 1293- 1299.
doi: 10.1086/375039
20 Latour P , Thauvin-Robinet C , Baudelet-Mery C , et al. A major determinant for binding and aminoacylation of tRNA (Ala) in cytoplasmic Alanyl-tRNA synthetase is mutated in dominant axonal Charcot-Marie-Tooth disease[J]. Am J Hum Genet, 2010, 86 (1): 77- 82.
doi: 10.1016/j.ajhg.2009.12.005
21 Gonzalez M , McLaughlin H , Houlden H , et al. Exome sequencing identifies a significant variant in methionyl-tRNA synthetase (MARS) in a family with late-onset CMT2[J]. J Neurol Neurosurg Psychiatry, 2013, 84 (11): 1247- 1249.
doi: 10.1136/jnnp-2013-305049
22 Vester A , Velez-Ruiz G , McLaughlin HM , et al. A loss-of-function variant in the human histidyl-tRNA synthetase (HARS) gene is neurotoxic in vivo[J]. Hum Mutat, 2013, 34 (1): 191- 199.
doi: 10.1002/humu.22210
23 Tsai PC , Soong BW , Mademan I , et al. A recurrent WARS mutation is a novel cause of autosomal dominant distal hereditary motor neuropathy[J]. Brain, 2017, 140 (5): 1252- 1266.
doi: 10.1093/brain/awx058
24 Yuan RY , Ye ZL , Zhang XR , et al. Evaluation of SORD mutations as a novel cause of Charcot-Marie-Tooth disease[J]. Ann Clin Transl Neurol, 2021, 8 (1): 266- 270.
doi: 10.1002/acn3.51268
25 Scarlino S , Domi T , Pozzi L , et al. Burden of rare variants in ALS and axonal hereditary neuropathy genes influence survival in ALS: Insights from a next generation sequencing study of an Italian ALS cohort[J]. Int J Mol Sci, 2020, 21 (9): 3346.
doi: 10.3390/ijms21093346
26 Montecchiani C , Pedace L , Giudice TL , et al. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease[J]. Brain, 2016, 139 (Pt 1): 73- 85.
27 Brenner D , Yilmaz R , Muller K , et al. Hot-spot KIF5A mutations cause familial ALS[J]. Brain, 2018, 141 (3): 688- 697.
doi: 10.1093/brain/awx370
28 He J , Liu X , Tang L , et al. Whole-exome sequencing identified novel KIF5A mutations in Chinese patients with amyotrophic lateral sclerosis and Charcot-Marie-Tooth type 2[J]. J Neurol Neurosurg Psychiatry, 2020, 91 (3): 326- 328.
doi: 10.1136/jnnp-2019-320483
29 Stavrou M , Sargiannidou I , Georgiou E , et al. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies[J]. Int J Mol Sci, 2021, 22 (11): 6048.
doi: 10.3390/ijms22116048
30 Bejaoui K , Wu C , Scheffler MD , et al. SPTLC1 is mutated in hereditary sensory neuropathy, type 1[J]. Nat Genet, 2001, 27 (3): 261- 262.
doi: 10.1038/85817
31 Eichler FS , Hornemann T , McCampbell A , et al. Overexpression of the wild-type SPT1 subunit lowers desoxysphingolipid levels and rescues the phenotype of HSAN1[J]. J Neurosci, 2009, 29 (46): 14646- 14651.
doi: 10.1523/JNEUROSCI.2536-09.2009
32 Fridman V , Suriyanarayanan S , Novak P , et al. Randomized trial of l-serine in patients with hereditary sensory and autonomic neuropathy type 1[J]. Neurology, 2019, 92 (4): e359- e370.
doi: 10.1212/WNL.0000000000006811
33 Mohassel P , Donkervoort S , Lone MA , et al. Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis[J]. Nat Med, 2021, 27 (7): 1197- 1204.
doi: 10.1038/s41591-021-01346-1
34 Zhang Y , Liu Z , Zhang Y , et al. Corneal sub-basal whorl-like nerve plexus: A landmark for early and follow-up evaluation in transthyretin familial amyloid polyneuropathy[J]. Eur J Neurol, 2021, 28 (2): 630- 638.
doi: 10.1111/ene.14563
35 Buxbaum JN . Oligonucleotide drugs for transthyretin amyloidosis[J]. N Engl J Med, 2018, 379 (1): 82- 85.
doi: 10.1056/NEJMe1805499
36 Visser AC , Klein CJ . Wild-type TTR neuropathy with cardiomyo-pathy presenting with burning feet[J]. Neurology, 2017, 88 (11): 1101- 1102.
doi: 10.1212/WNL.0000000000003721
[1] 王微,李鑫,柳萍,董颖. 荧光原位杂交检测MDM2DDIT3基因信号改变在诊断脂肪肉瘤中的价值[J]. 北京大学学报(医学版), 2023, 55(2): 228-233.
[2] 周秋君,龚潘,焦莶如,杨志仙. 1例Angelman综合征合并眼皮肤白化病2型患者的临床和遗传学分析及文献回顾[J]. 北京大学学报(医学版), 2023, 55(1): 181-185.
[3] 曹瑞洁,姚中强,焦朋清,崔立刚. 不同分类标准对中国大动脉炎的诊断效能比较[J]. 北京大学学报(医学版), 2022, 54(6): 1128-1133.
[4] 曹乐清,周婧睿,陈育红,陈欢,韩伟,陈瑶,张圆圆,闫晨华,程翼飞,莫晓冬,付海霞,韩婷婷,吕萌,孔军,孙于谦,王昱,许兰平,张晓辉,黄晓军. 异基因造血干细胞移植后晚发重症肺炎患者治疗与预后转归的关系[J]. 北京大学学报(医学版), 2022, 54(5): 1013-1020.
[5] 梁喆,范芳芳,张岩,秦献辉,李建平,霍勇. 中国高血压人群中H型高血压的比率和特征及与美国人群的比较[J]. 北京大学学报(医学版), 2022, 54(5): 1028-1037.
[6] 陆林,刘晓星,袁凯. 中国脑科学计划进展[J]. 北京大学学报(医学版), 2022, 54(5): 791-795.
[7] 方伟岗,田新霞,解云涛. 基因多态性对中国汉族女性乳腺癌遗传易感性的影响[J]. 北京大学学报(医学版), 2022, 54(5): 822-828.
[8] 张力,龚继芳,潘宏铭,白玉贤,刘天舒,程颖,陈亚池,黄佳莹,许婷婷,葛飞娇,许婉玲,施佳,胡夕春,沈琳. 阿替利珠单抗治疗中国晚期实体瘤患者的开放标签Ⅰ期临床试验[J]. 北京大学学报(医学版), 2022, 54(5): 971-980.
[9] 秦彩朋,宋宇轩,丁梦婷,王飞,林佳兴,杨文博,杜依青,李清,刘士军,徐涛. 肾癌免疫治疗疗效评估突变预测模型的建立[J]. 北京大学学报(医学版), 2022, 54(4): 663-668.
[10] 杨若彤,王梦莹,李春男,于欢,王小文,吴俊慧,王斯悦,王伽婷,陈大方,吴涛,胡永华. 缺血性脑卒中全基因组关联研究提示阳性基因位点与睡眠行为的交互作用[J]. 北京大学学报(医学版), 2022, 54(3): 412-420.
[11] 丁婷婷,曾楚雄,胡丽娜,余明华. 基于癌症基因组图谱数据库结直肠癌免疫细胞浸润预测模型的建立[J]. 北京大学学报(医学版), 2022, 54(2): 203-208.
[12] 焦翠,王俭妹,况海霞,武志红,柳涛. CACNA1H基因敲除对小鼠孤独症样行为及海马神经元形态学的影响[J]. 北京大学学报(医学版), 2022, 54(2): 209-216.
[13] 许颖,次仁央金. 高原红细胞增多症与消化性溃疡出血的关系[J]. 北京大学学报(医学版), 2022, 54(1): 161-165.
[14] 朱小玲,李文静,王宪娥,宋文莉,徐莉,张立,冯向辉,路瑞芳,释栋,孟焕新. 细胞色素B-245α链及胆固醇酯转运蛋白基因多态性与广泛型侵袭性牙周炎易感性的关系[J]. 北京大学学报(医学版), 2022, 54(1): 18-22.
[15] 刘梅歌,方朴,王严,丛璐,范洋溢,袁远,徐燕,张俊,洪道俊. 远端型遗传性运动神经病8例的临床、病理及遗传学特点[J]. 北京大学学报(医学版), 2021, 53(5): 957-963.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .
[2] 管宏, 赵慧云, 沈磊, 李五岭, 王建华, 王春荣, 徐福. 联合应用重组TPO和G-CSF对骨髓抑制性小鼠外周血小板及白细胞恢复的影响[J]. 北京大学学报(医学版), 2001, 33(2): 181 -182 .
[3] 牟向东, 王广发, 阙呈立, 李桂莲. H3N2型人流行性感冒合并金黄色葡萄球菌败血症及金黄色葡萄球菌肺炎1例[J]. 北京大学学报(医学版), 2007, 39(6): 663 -665 .
[4] 范蓉, 张成飞, 高岩, 李斌斌, 王晶. 核因子-κB受体活化因子配体和骨保护素在慢性根尖周炎病损组织中的表达[J]. 北京大学学报(医学版), 2008, 40(1): 39 -42 .
[5] 徐京杭, 于岩岩, 斯崇文, 陈新月, 韩忠厚, 陈勇, 张文谨, 徐道振, 陈宇萍, 于敏, 席宏丽, 李雪迎. 拉米夫定或干扰素单药治疗及序贯治疗慢性乙型肝炎的随机对照临床研究[J]. 北京大学学报(医学版), 2010, 42(6): 739 -745 .
[6] 章巍, 王广发, 张红, 牟向东, 金哲. 用内科胸腔镜进行滑石粉胸膜固定术治疗恶性胸腔积液27例临床分析[J]. 北京大学学报(医学版), 2008, 40(6): 600 -602 .
[7] 冯艺, 崔明磊, William D.WILLIS. 抗惊厥药加巴喷丁抑制内脏疼痛的作用及其与脊髓氨基酸递质释放的关系[J]. 北京大学学报(医学版), 2003, 35(3): 307 -310 .
[8] 田清平, 冯雪茹, 庞永正, 唐朝枢, 刘梅林. 血浆皮质醇激素抑制素水平与冠心病的关系[J]. 北京大学学报(医学版), 2009, 41(5): 537 -540 .
[9] 陈磊, 张豪, 冯海兰, 张凤军. 正常受试者单侧咀嚼运动中的牙合接触模式[J]. 北京大学学报(医学版), 2009, 41(1): 90 -94 .
[10] 赵英芳, 田新霞, 杜娟, 张云岗, 刘松年, 林杰, 郑杰. 胃癌中p16INK4a和RB基因甲基化状况及其表达[J]. 北京大学学报(医学版), 2003, 35(4): 382 -385 .