北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (5): 1047-1055. doi: 10.19723/j.issn.1671-167X.2022.05.035

• 论著 • 上一篇    下一篇

抗高血压药物对二氧化氮长期暴露与慢性肾脏病关联的修饰效应

马麟1,吴静依2,李双成3,李鹏飞2,4,*(),张路霞2,4,5,*()   

  1. 1. 北京大学医学部学科建设办公室, 北京 100191
    2. 浙江省北大信息技术高等研究院, 杭州 311215
    3. 北京大学地表过程分析与模拟教育部重点实验室, 北京大学城市与环境学院, 北京 100871
    4. 北京大学健康医疗大数据国家研究院, 北京 100191
    5. 北京大学第一医院肾内科, 北京大学肾脏病研究所, 北京 100034
  • 收稿日期:2022-05-09 出版日期:2022-10-18 发布日期:2022-10-14
  • 通讯作者: 李鹏飞,张路霞 E-mail:pfli@aiit.org.cn;zhanglx@bjmu.edu.cn
  • 作者简介:李鹏飞,信息技术高级工程师,北京大学信息技术高等研究院(浙江)智慧医疗研究中心副主任、高级研究员,北京大学健康医疗大数据国家研究院大数据平台技术负责人。担任中国医院协会健康医疗大数据应用管理专业委员会委员、中华预防医学会肾脏病预防与控制专业委员会委员等学术职务。
    主要研究方向为健康医疗大数据智能治理、分析与应用,特别是在大数据驱动的重大疾病智能管理体系和基于精准医疗理念的肿瘤智能防治技术领域开展了系统性的研究工作。近5年,主持研发了“未数”健康医疗大数据智能分析平台、北京大学人民医院肺癌大数据平台、武汉市COVID-19医疗救治监测可视化平台等项目,获评浙江省数字经济“五新”优秀案例、浙江省软件产业高质量发展重点项目、浙江省人工智能优秀解决方案等。累计发表SCI收录及中文核心期刊论文20余篇,申请发明专利21项(授权8项)、软件著作权13项|张路霞,教授,主任医师,博士生导师;现任北京大学健康医疗大数据国家研究院副院长;获得国家杰出青年科学基金、教育部新世纪优秀人才支持计划等基金支持;担任中国医院协会健康医疗大数据应用管理专业委员会首届副主任委员兼秘书长、中华预防医学会肾脏病预防与控制专业委员会副主任委员兼秘书长、Science合作期刊Health Data Science创刊副主编等学术职务。
    长期致力于健康医疗大数据的治理与应用研究以及慢性肾脏病的疾病负担与管理模式研究,迄今在New England Journal of MedicineLancetBritish Medical Journal等期刊发表研究论文103篇,累计他引2 958次,出版中文专著4部。2020年和2021年连续入选爱思唯尔“中国高被引学者”榜单,获2021年中国女医师协会五洲女子科技奖
  • 基金资助:
    国家自然科学基金(72125009);北大百度基金(2020BD004);北大百度基金(2020BD005)

Effect of modification of antihypertensive medications on the association of nitrogen dioxide long-term exposure and chronic kidney disease

Lin MA1,Jing-yi WU2,Shuang-cheng LI3,Peng-fei LI2,4,*(),Lu-xia ZHANG2,4,5,*()   

  1. 1. Office of Development Planning and Academic Development, Peking University, Beijing 100191, China
    2. Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
    3. Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
    4. National Institute of Health Data Science, Peking University, Beijing 100191, China
    5. Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
  • Received:2022-05-09 Online:2022-10-18 Published:2022-10-14
  • Contact: Peng-fei LI,Lu-xia ZHANG E-mail:pfli@aiit.org.cn;zhanglx@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(72125009);the PKU-Baidu Fund(2020BD004);the PKU-Baidu Fund(2020BD005)

摘要:

目的: 探讨抗高血压药物对二氧化氮(nitrogen dioxide,NO2)和慢性肾脏病(chronic kidney disease,CKD)关联的修饰效应。方法: 基于中国CKD流行病学调查研究的2007—2010年全国成年人代表性横断面数据进行NO2暴露数据的收集与匹配,按照是否合并高血压和使用抗高血压药物进行分层,采用广义相加混合效应模型研究不同人群NO2长期暴露与CKD的关联效应及差异,分别利用自然样条平滑函数拟合NO2和CKD的暴露反应关系,分析抗高血压药物对NO2-CKD关联及暴露反应曲线的修饰效应。结果: 共纳入45 136例研究对象,平均年龄为(49.5±15.3)岁,NO2年平均暴露浓度为(7.2±6.4) μg/m3,使用抗高血压药物者共6 517人(14.4%),CKD患者为4 833人(10.7%)。调整混杂因素后,合并高血压、未使用抗高血压药物的人群中,NO2长期暴露能导致CKD风险显著增加(OR:1.38,95%CI:1.24~1.54,P < 0.001);使用抗高血压药物的人群中,NO2长期暴露与CKD风险无显著关联(OR:0.96,95%CI:0.86~1.07,P=0.431)。NO2-CKD的暴露反应曲线显示,NO2暴露与CKD的关联存在一定的非线性趋势。抗高血压药物对NO2-CKD关联和暴露反应曲线均具有显著的效应修饰作用(交互项P值< 0.001)。结论: NO2的长期暴露与CKD风险的关联受到抗高血压药物的修饰作用,使用抗高血压药物可有效降低NO2的长期暴露对CKD的影响。

关键词: 抗高血压药, 二氧化氮, 慢性肾脏病, 修饰效应

Abstract:

Objective: To investigate the potential effect of modification of antihypertensive medications on the association of nitrogen dioxide (NO2) long-term exposure and chronic kidney disease (CKD). Methods: Data of the national representative sample of adult population from the China National Survey of Chronic Kidney Disease (2007-2010) were included in the analyses, and exposure data of NO2 were collected and matched. Generalized mixed-effects models were used to analyze the associations between NO2 and CKD, stratified by the presence of hypertension and taking antihypertensive medications. The stratified exposure-response curves of NO2 and CKD were fitted using the natural spine smoothing function. The modifying effects of antihypertensive medications on the association and the exposure-response curve of NO2 and CKD were analyzed. Results: Data of 45 136 participants were included, with an average age of (49.5±15.3) years. The annual average exposure concentration of NO2 was (7.2±6.4) μg/m3. Altogether 6 517 (14.4%) participants were taking antihypertensive medications, and 4 833 (10.7%) participants were identified as having CKD. After adjustment for potential confounders, in the hypertension population not using antihypertensive medications, long-term exposure to NO2 was associated with a significant increase risk of CKD (OR: 1.38, 95%CI: 1.24-1.54, P < 0.001); while in the hypertension population using antihypertensive medications, no significant association between long-term exposure to NO2 and CKD (OR: 0.96, 95%CI: 0.86-1.07, P=0.431) was observed. The exposure-response curve of NO2 and CKD suggested that there was a non-linear trend in the association between NO2 and CKD. The antihypertension medications showed significant modifying effects both on the association and the exposure-response curve of NO2 and CKD (interaction P < 0.001). Conclusion: The association between long-term exposure to NO2 and CKD was modified by antihypertensive medications. Taking antihypertensive medications may mitigate the effect of long-term exposure to NO2 on CKD.

Key words: Antihypertensive agents, Nitrogen dioxide, Chronic kidney disease, Effect modification

中图分类号: 

  • R692

表1

研究人群的基本特征"

Items All
(n=45 136)
Without HBP
(n=29 725)
HBP+without anti-HBP
(n=8 894)
HBP+anti-HBP
(n=6 517)
Missing P
CKD 4 833(10.7) 2 056(6.9) 1 377(15.5) 1 400(21.5) 0 < 0.001
NO2/(μg/m3) 7.2±6.4 6.7±6.2 7.5±6.4 8.9±7.0 0 < 0.001
Age 49.5±15.3 45.5±14.3 54.4±14.5 61.4±11.7 0 < 0.001
Female 25 706(57.0) 17 488(58.8) 4 354(49.0) 3 864(59.3) 0 < 0.001
Rural 21 748(48.2) 14 539(48.9) 4 600(51.7) 2 609(40.0) 0 < 0.001
Region 0 < 0.001
  South 10 241(22.7) 7 596(25.6) 1 573(17.7) 1 072(16.4)
  North 15 124(33.5) 9 504(32.0) 3 141(35.3) 2 479(38.0)
  East 10 089(22.4) 5 522(18.6) 2 567(28.9) 2 000(30.7)
  Middle 2 661(5.9) 2 011(6.8) 386(4.3) 264(4.1)
  Northwest 4 026(8.9) 2 676(9.0) 819(9.2) 531(8.1)
  Southwest 2 995(6.6) 2 416(8.1) 408(4.6) 171(2.6)
Education 119 < 0.001
  None 4 630(10.3) 2 217(7.5) 1 321(14.9) 1 092(16.8)
  Primary school 8 395(18.6) 4 826(16.2) 2 071(23.3) 1 498(23.0)
  Middle school 12 517(27.7) 8 362(28.1) 2 486(28.0) 1 669(25.6)
  High school 11 332(25.1) 7 916(26.6) 1 977(22.2) 1 439(22.1)
  College and above 8 143(18.0) 6 325(21.3) 1 016(11.4) 802(12.3)
Smoking 39 < 0.001
  Never 34 452(76.3) 22 876(77.0) 6 356(71.5) 5 220(80.1)
  Sometimes 1 071(2.4) 702(2.4) 236(2.7) 133(2.0)
  Almost once a day 9 574(21.2) 6 119(20.6) 2 294(25.8) 1 161(17.8)
Alcohol consumption 96 < 0.001
  < 1 time/week 38 031(84.3) 25 430(85.6) 6 999(78.7) 5 602(86.0)
  1-2 times/week 2 485(5.5) 1 656(5.6) 532(6.0) 297(4.6)
  >3 times/week 4 524(10.0) 2 569(8.6) 1 350(15.2) 605(9.3)
Exercise 9 277 < 0.001
  Never 21 413(47.4) 14 146(47.6) 4 634(52.1) 2 633(40.4)
  0-3 h/week 4 807(10.7) 3 227(10.9) 840(9.4) 740(11.4)
  >3 h/week 9 639(21.4) 5 803(19.5) 1 831(20.6) 2 005(30.8)
BMI/(kg/m2) 23.9±3.7 23.0±3.4 25.2±3.7 25.7±3.8 332 < 0.001
Total cholesterol 4.9±1.3 4.7±1.3 5.0±1.3 5.2±1.6 17 < 0.001
Diabetes 10 568(23.4) 5 090(17.1) 2 841(31.9) 2 637(40.5) 43 < 0.001
CVD 1 152(2.6) 294(1.0) 201(2.3) 657(10.1) 0 < 0.001
Nephrotoxic medications used 1 468(3.3) 808(2.7) 314(3.5) 346(5.3) 0 < 0.001
eGFR/(mL/min·1.73 m2) 101.1±27.6 103.6±27.6 99.6±27.3 92.1±25.6 0 < 0.001
uACR/(mg/g) 6.7(3.0, 14.4) 6.0(2.8, 11.9) 8.1(3.4, 18.3) 10.1(4.3, 24.2) 0 < 0.001
Albuminuria 6 030(13.4) 3 162(10.6) 1 488(16.7) 1 380(21.2) 0 < 0.001

表2

抗高血压药物对NO2与CKD关联的修饰效应"

Per 10 μg/m3
increase of NO2
Univariate analysis Model 1 Model 2 Model 3
OR P Pinteraction OR P Pinteraction OR P Pinteraction OR P Pinteraction
All 1.36
(1.30, 1.41)
< 0.001 < 0.001 1.40
(1.33, 1.46)
< 0.001 < 0.001 1.45
(1.39, 1.52)
< 0.001 < 0.001 1.45
(1.37, 1.52)
< 0.001 < 0.001
Without HBP 1.57
(1.48, 1.67)
< 0.001 1.70
(1.60, 1.82)
< 0.001 1.74
(1.62, 1.86)
< 0.001 1.70
(1.59, 1.83)
< 0.001
HBP+without anti-HBP 1.12
(1.02, 1.22)
0.013 1.25
(1.14, 1.38)
< 0.001 1.41
(1.27, 1.55)
< 0.001 1.38
(1.24, 1.54)
< 0.001
HBP+anti-HBP 0.92
(0.85, 1.00)
0.065 0.91
(0.83, 1.00)
0.048 0.91
(0.83, 1.01)
0.064 0.96
(0.86, 1.07)
0.431

表3

抗高血压药物对NO2与eGFR关联的修饰效应"

Per 10 μg/m3
increase of NO2
Univariate analysis Model 1 Model 2 Model 3
RR P Pinteraction RR P Pinteraction RR P Pinteraction RR P Pinteraction
All 1.03
(1.03, 1.03)
< 0.001 < 0.001 1.06
(1.06, 1.06)
< 0.001 < 0.001 1.06
(1.06, 1.07)
< 0.001 < 0.001 1.06
(1.06, 1.07)
< 0.001 0.002
Without HBP 1.04
(1.03, 1.04)
< 0.001 1.06
(1.06, 1.07)
< 0.001 1.06
(1.06, 1.07)
< 0.001 1.06
(1.06, 1.07)
< 0.001
HBP+without anti-HBP 1.07
(1.07, 1.07)
< 0.001 1.06
(1.06, 1.07)
< 0.001 1.07
(1.07, 1.08)
< 0.001 1.07
(1.07, 1.08)
< 0.001
HBP+anti-HBP 1.02
(1.02, 1.03)
< 0.001 1.04
(1.04, 1.05)
< 0.001 1.06
(1.05, 1.06)
< 0.001 1.06
(1.05, 1.06)
< 0.001

表4

调整不同环境协变量后抗高血压药物对NO2与CKD关联的修饰效应"

Per 10 μg/m3 increase of NO2 Adjusted for PM2.5 Adjusted for temperature Adjusted for relative humidity
OR P Pinteraction OR P Pinteraction OR P Pinteraction
All 1.80
(1.70, 1.90)
< 0.001 < 0.001 1.55
(1.46, 1.64)
< 0.001 < 0.001 1.45
(1.37, 1.53)
< 0.001 < 0.001
Without HBP 2.12
(1.96, 2.28)
< 0.001 1.90
(1.75, 2.06)
< 0.001 1.77
(1.64, 1.92)
< 0.001
HBP+without anti-HBP 1.65
(1.46, 1.86)
< 0.001 1.38
(1.22, 1.56)
< 0.001 1.28
(1.14, 1.44)
< 0.001
HBP+anti-HBP 1.19
(1.06, 1.34)
0.004 0.94
(0.83, 1.07)
0.343 0.89
(0.79, 1.00)
0.052

图1

抗高血压药物对NO2-CKD暴露反应曲线的修饰效应"

1 World Health Organization. Ambient (outdoor) air pollution [EB/OL]. (2021-09-22) [2022-03-07]. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
2 Li X , Jin L , Kan H . Air pollution: A global problem needs local fixes[J]. Nature, 2019, 570 (7762): 437- 439.
doi: 10.1038/d41586-019-01960-7
3 Orellano P , Reynoso J , Quaranta N , et al. Short-term exposure to particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-analysis[J]. Environ Int, 2020, 142, 105876.
doi: 10.1016/j.envint.2020.105876
4 Lu JP , Lu Y , Wang XC , et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1.7 million adults in a population-based screening study (China PEACE Million Persons Project)[J]. Lancet, 2017, 390 (10112): 2549- 2558.
doi: 10.1016/S0140-6736(17)32478-9
5 Zhang L , Wang F , Wang L , et al. Prevalence of chronic kidney disease in China: A cross-sectional survey[J]. Lancet, 2012, 379 (9818): 815- 822.
doi: 10.1016/S0140-6736(12)60033-6
6 Wu MY , Lo WC , Chao CT , et al. Association between air pollutants and development of chronic kidney disease: A systematic review and meta-analysis[J]. Sci Total Environ, 2020, 706, 135522.
doi: 10.1016/j.scitotenv.2019.135522
7 Bowe B , Xie Y , Li T , et al. Associations of ambient coarse particulate matter, nitrogen dioxide, and carbon monoxide with the risk of kidney disease: A cohort study[J]. Lancet Planet Health, 2017, 1 (7): e267- e276.
doi: 10.1016/S2542-5196(17)30117-1
8 梁琛瑜, 王万州, 马麟, 等. 大气NO2长期暴露与中国成人慢性肾脏病的关联: 基于中国慢性肾脏病流行病学调查[J]. 环境与职业医学, 2021, 38 (6): 566- 572.
9 Cockwell P , Fisher LA . The global burden of chronic kidney disease[J]. Lancet, 2020, 395 (10225): 662- 664.
doi: 10.1016/S0140-6736(19)32977-0
10 Murad MH , Larrea-Mantilla L , Haddad A , et al. Antihyperten-sive agents in older adults: A systematic review and meta-analysis of randomized clinical trials[J]. J Clin Endocrinol Metab, 2019, 104 (5): 1575- 1584.
doi: 10.1210/jc.2019-00197
11 Liu B , Wang Q , Wang Y , et al. Utilization of antihypertensive drugs among chronic kidney disease patients: Results from the Chinese cohort study of chronic kidney disease (C-STRIDE)[J]. J Clin Hypertens (Greenwich), 2020, 22 (1): 57- 64.
doi: 10.1111/jch.13761
12 Ptinopoulou AG , Pikilidou MI , Lasaridis AN . The effect of antihypertensive drugs on chronic kidney disease: A comprehensive review[J]. Hypertens Res, 2013, 36 (2): 91- 101.
doi: 10.1038/hr.2012.157
13 Sarnak MJ , Levey AS , Schoolwerth AC , et al. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention[J]. Circulation, 2003, 108 (17): 2154- 2169.
doi: 10.1161/01.CIR.0000095676.90936.80
14 Brook RD , Franklin B , Cascio W , et al. Air pollution and cardiovascular disease: A statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association[J]. Circulation, 2004, 109 (21): 2655- 2671.
doi: 10.1161/01.CIR.0000128587.30041.C8
15 Li G , Huang J , Wang J , et al. Long-term exposure to ambient PM(2.5) and increased risk of CKD prevalence in China[J]. J Am Soc Nephrol, 2021, 32 (2): 448- 458.
doi: 10.1681/ASN.2020040517
16 Geddes JA , Martin RV , Boys BL , et al. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations[J]. Environ Health Perspect, 2016, 124 (3): 281- 289.
doi: 10.1289/ehp.1409567
17 Geddes JA , Martin RV , Boys BL , et al. Global 3-year running mean ground-level nitrogen dioxide (NO2) grids from GOME, SCIAMACHY and GOME-2[M]. Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC), 2017.
18 Guo J , Xia F , Zhang Y , et al. Impact of diurnal variability and meteorological factors on the PM2.5-AOD relationship: Implications for PM2.5 remote sensing[J]. Environ Pollut, 2017, 221, 94- 104.
doi: 10.1016/j.envpol.2016.11.043
19 Lv B , Hu Y , Chang HH , et al. Daily estimation of ground-level PM2.5 concentrations at 4km resolution over Beijing-Tianjin-Hebei by fusing MODIS AOD and ground observations[J]. Sci Total Environ, 2017, 580, 235- 244.
doi: 10.1016/j.scitotenv.2016.12.049
20 Lee HJ , Liu Y , Coull BA , et al. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations[J]. Atmos Chem Phys, 2011, 11 (15): 7991- 8002.
doi: 10.5194/acp-11-7991-2011
21 Levin A , Stevens PE , Bilous RW , et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease[J]. Kidney Int Suppl, 2013, 3 (1): 1- 105.
doi: 10.1038/kisup.2012.73
22 He D , Wu S , Zhao H , et al. Association between particulate matter 2.5 and diabetes mellitus: A meta-analysis of cohort studies[J]. J Diabetes Investig, 2017, 8 (5): 687- 696.
doi: 10.1111/jdi.12631
23 Yang BY , Qian Z , Li S , et al. Ambient air pollution in relation to diabetes and glucose-homoeostasis markers in China: A cross-sectional study with findings from the 33 Communities Chinese Health Study[J]. Lancet Planet Health, 2018, 2 (2): e64- e73.
doi: 10.1016/S2542-5196(18)30001-9
24 Yang BY , Qian Z , Howard SW , et al. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis[J]. Environ Pollut, 2018, 235, 576- 588.
doi: 10.1016/j.envpol.2018.01.001
25 Cai Y , Zhang B , Ke W , et al. Associations of short-term and long-term exposure to ambient air pollutants with hypertension: A systematic review and meta-analysis[J]. Hypertension, 2016, 68 (1): 62- 70.
doi: 10.1161/HYPERTENSIONAHA.116.07218
26 Dadvand P , Nieuwenhuijsen MJ , Agustí À , et al. Air pollution and biomarkers of systemic inflammation and tissue repair in COPD patients[J]. Eur Respir J, 2014, 44 (3): 603- 613.
doi: 10.1183/09031936.00168813
27 Kim HJ , Min JY , Min KB , et al. CDH13 gene-by-PM10 interaction effect on lung function decline in Korean men[J]. Chemosphere, 2017, 168, 583- 589.
doi: 10.1016/j.chemosphere.2016.11.022
28 Mills NL , Donaldson K , Hadoke PW , et al. Adverse cardiovascular effects of air pollution[J]. Nat Clin Pract Cardiovasc Med, 2009, 6 (1): 36- 44.
doi: 10.1038/ncpcardio1399
29 Pope CA 3rd , Bhatnagar A , Mccracken JP , et al. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation[J]. Circ Res, 2016, 119 (11): 1204- 1214.
doi: 10.1161/CIRCRESAHA.116.309279
30 Silverstein DM . Inflammation in chronic kidney disease: Role in the progression of renal and cardiovascular disease[J]. Pediatr Nephrol, 2009, 24 (8): 1445- 1452.
doi: 10.1007/s00467-008-1046-0
31 Gupta J , Mitra N , Kanetsky PA , et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC[J]. Clin J Am Soc Nephrol, 2012, 7 (12): 1938- 1946.
doi: 10.2215/CJN.03500412
32 纪培颖, 许雁集, 沈凌. 不同降压药对慢性肾脏病患者肾脏的保护作用[J]. 当代医学, 2019, 25 (13): 143- 145.
doi: 10.3969/j.issn.1009-4393.2019.13.057
33 Abe M , Okada K , Maruyama T , et al. Comparison of the antiproteinuric effects of the calcium channel blockers benidipine and amlodipine administered in combination with angiotensin receptor blockers to hypertensive patients with stage 3-5 chronic kidney disease[J]. Hypertens Res, 2009, 32 (4): 270- 275.
doi: 10.1038/hr.2009.11
34 环境保护部, 国家质量监督检验检疫总局. GB 3095—2012环境空气质量标准[S]. 北京: 中国环境科学出版社, 2012.
35 World Health Organization . Air quality guidelines: global update 2005: Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide[M]. Geneva: WHO, 2006.
36 Mehta AJ , Zanobetti A , Bind MA , et al. Long-term exposure to ambient fine particulate matter and renal function in older men: The veterans administration normative aging study[J]. Environ Health Perspect, 2016, 124 (9): 1353- 1360.
doi: 10.1289/ehp.1510269
37 Szyszkowicz M , Rowe BH , Brook RD . Even low levels of ambient air pollutants are associated with increased emergency department visits for hypertension[J]. Can J Cardiol, 2012, 28 (3): 360- 366.
doi: 10.1016/j.cjca.2011.06.011
38 Nam YS , Cho KH , Kang HC , et al. Greater continuity of care reduces hospital admissions in patients with hypertension: An analysis of nationwide health insurance data in Korea, 2011-2013[J]. Health Policy, 2016, 120 (6): 604- 611.
doi: 10.1016/j.healthpol.2016.04.012
[1] 徐菱忆,惠淼,朱树宏,杨照,李梦蕊,杨宏宇,郑茜子,吕继成,杨莉. 社区慢性肾脏病的筛查与管理现状[J]. 北京大学学报(医学版), 2022, 54(5): 1056-封三.
[2] 杨超,王晋伟,杨尧政,白坤昊,高碧霞,赵明辉,张路霞,吴寿岭,王芳. 贫血及慢性肾脏病对糖尿病人群心脑血管事件发生与死亡的影响[J]. 北京大学学报(医学版), 2018, 50(3): 495-500.
[3] 林鸿波,陈奕,沈鹏,李小勇,司亚琴,张杜丹,唐迅,高培. 社区糖尿病患者慢性肾脏病的发病率及其危险因素[J]. 北京大学学报(医学版), 2018, 50(3): 416-421.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张三. 中文标题测试[J]. 北京大学学报(医学版), 2010, 42(1): 1 -10 .
[2] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[3] 万有, , 韩济生, John E. Pintar. 孤啡肽基因敲除小鼠电针镇痛作用增强[J]. 北京大学学报(医学版), 2009, 41(3): 376 -379 .
[4] 张燕, 韩志慧, 钟延丰, 王盛兰, 李玲玲, 郑丹枫. 骨骼肌活组织检查病理诊断技术的改进及应用[J]. 北京大学学报(医学版), 2009, 41(4): 459 -462 .
[5] 张安阳, 范田园. 运用响应曲面法优化核黄素磷酸钠海藻酸钙胃漂浮微球[J]. 北京大学学报(医学版), 2009, 41(6): 682 -686 .
[6] 赵奇, 薛世华, 刘志勇, 吴凌云. 同向施压测定自酸蚀与全酸蚀粘接系统粘接强度[J]. 北京大学学报(医学版), 2010, 42(1): 82 -84 .
[7] 林红, 王玉凤, 吴野平. 学校生活技能教育对小学三年级学生行为问题影响的对照研究[J]. 北京大学学报(医学版), 2007, 39(3): 319 -322 .
[8] 丰雷, 程嘉, 王玉凤. 注意缺陷多动障碍儿童的运动协调功能[J]. 北京大学学报(医学版), 2007, 39(3): 333 -336 .
[9] 李岳玲, 钱秋瑾, 王玉凤. 儿童注意缺陷多动障碍成人期预后及其预测因素[J]. 北京大学学报(医学版), 2007, 39(3): 337 -340 .
[10] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .