北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (6): 1202-1207. doi: 10.19723/j.issn.1671-167X.2022.06.024

• 技术方法 • 上一篇    下一篇

个性化剂量熔融沉积成型3D打印茶碱片剂的制备和体外评价

开地尔娅·阿不都热合曼,张荣赓,钱浩楠,邹振洋,丹尼娅·叶斯涛,范田园*()   

  1. 北京大学药学院药剂学系,北京大学药学院分子药剂学与新释药系统北京市重点实验室,北京 100191
  • 收稿日期:2021-10-18 出版日期:2022-12-18 发布日期:2022-12-19
  • 通讯作者: 范田园 E-mail:tianyuan_fan@bjmu.edu.cn

Preparation and in vitro evaluation of FDM 3D printed theophylline tablets with personalized dosage

ABUDUREHEMAN Kaidierya,Rong-geng ZHANG,Hao-nan QIAN,Zhen-yang ZOU,YESITAO Danniya,Tian-yuan FAN*()   

  1. Department of Pharmaceutics, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
  • Received:2021-10-18 Online:2022-12-18 Published:2022-12-19
  • Contact: Tian-yuan FAN E-mail:tianyuan_fan@bjmu.edu.cn

摘要:

目的: 探究以熔融沉积成型(fused deposition modeling,FDM)3D打印技术制备用于个性化治疗的不同剂量片剂的可行性,并对所制备的FDM 3D打印片剂进行相关的体外质量评价。方法: 采用聚乙烯醇(polyvinyl alcohol,PVA)丝材,通过FDM 3D打印技术制备中空的、三种大小的片剂外壳;以茶碱为模型药物,将20、50和100 mg三种剂量的茶碱分别填充于片剂的空腔内。以扫描电镜(scanning electron microscopy,SEM)观察制剂的外观形态,以称重法考察片剂的质量差异,以片剂硬度测定仪测定片剂的硬度,采用紫外-可见分光光度法(ultraviolet and visible spectrophotometry, UV-Vis)测定片剂中的药物含量,并用溶出仪对片剂的体外释药行为进行表征。结果: 制备出的FDM 3D打印片剂形态良好,无打印缺陷,片剂的直径与厚度均与设计相符,扫描电镜观察可以看出层与层之间紧密连接,能清晰观察到制剂的细微结构;三种大小的片剂平均质量分别为(150.5±2.3) mg、(293.6±2.6) mg和(456.2±5.6) mg,其质量差异均低于5%;片剂的硬度均超过了200 N;测得三种片剂中茶碱含量分别为加入量(20、50和100 mg)的98.2%、97.2%和97.9%,相对标准偏差分别为1.06%、1.15%和0.63%;三种剂量片剂释药80%的时间均在30 min以内。结论: 采用FDM 3D打印技术成功制备了20、50和100 mg三种不同剂量的茶碱片剂, 且打印的茶碱片剂质量良好。

关键词: 熔融沉积成型, 3D打印, 茶碱, 个性化治疗, 片剂, 剂量

Abstract:

Objective: To explore the feasibility of preparing different doses of tablets for personalized treatment by fused deposition modeling (FDM) 3D printing technology, and to evaluate the in vitro quality of the FDM 3D printed tablets. Methods: Three different sizes of hollow tablets were prepared by fused deposition modeling 3D printing technology with polyvinyl alcohol (PVA) filaments. Theophylline was chosen as the model drug. In the study, 20 mg, 50 mg and 100 mg of theophylline was filled into the cavity of the tablets, respectively. The microscopic morphology of the tablets was observed by scanning electron microscopy (SEM). The weight variation of the tablets was investigated by weighing method. The hardness of the tablets was measured by tablet hardness tester. The contents of the drugs in the tablets were determined by ultraviolet and visible spectrophotometry (UV-Vis), and the dissolution apparatus was used to assay the in vitro drug release of the tablets. Results: The prepared FDM 3D printed tablets were all in good shape without printing defects. And there was no leakage phenomenon. The diameter and thickness of the tablets were consistent with the design. The layers were tightly connected, and the fine structure of the formulation could be clearly observed without printing defects by scanning electron microscopy. The average weight of the three sizes of tablets was (150.5±2.3) mg, (293.6±2.6) mg and (456.2±5.6) mg, respectively. The weight variation of the three sizes of tablets were boss less than 5%, which met the requirements; The hardness of the tablets all exceeded 200 N; The contents of theophylline in the three tablets were 98.0%, 97.2% and 97.9% of the dosage (20 mg, 50 mg and 100 mg), and the relative standard deviation (RSD) was 1.06%, 1.15% and 0.63% respectively; The time for 80% drug released from the three dosage of tablets was within 30 min. Conclusion: Three different dosages of theophylline tablets were successfully prepared by FDM 3D printing technology in this study. The exploration may bring beneficial for the preparation of personalized dose preparations. We expect that with the development of 3D printing technology, FDM 3D printed personalized tablets can be used in the clinic as soon as possible to provide personalized treatment for patients.

Key words: Fused deposition modeling, 3D printing, Theophylline, Personalized medicine, Tablets, Dosage

中图分类号: 

  • R94

图1

3D打印片剂模型的设计"

表1

FDM 3D打印片剂的参数设计"

Dosage/mg Diameter/mm Height/mm Layer height/mm Roof thickness/mm Floor thickness/mm Number of shells
20.0 10.0 3.2 0.2 0.8 0.4 2
50.0 12.0 4.2 0.2 0.8 0.4 2
100 14.4 5.2 0.2 0.8 0.4 2

图2

3D打印片剂实物"

图3

3D打印片剂的扫描电镜和实物照片"

图4

3D打印片剂的体外溶出曲线"

1 Huang Y , Leu MC , Mazumder J , et al. Additive manufacturing: Current state, future potential, gaps and needs, and recommendations[J]. J Manuf Sci Eng, 2015, 137 (1): 014001.
doi: 10.1115/1.4028725
2 Crump SS. Apparatus and method for creating three-dimensional objects, EP0426363A2[P], 1991.05.08.
3 Brambilla CRM , Okafor-Muo OL , Hassanin H , et al. 3D printing of oral solid formulations: A systematic review[J]. Pharmaceutics, 2021, 13 (3): 358.
doi: 10.3390/pharmaceutics13030358
4 支气管哮喘防治指南(2020年版)[J]. 中华结核和呼吸杂志, 2020, 43(12): 1023-1048.
5 国家药典委员会. 中华人民共和国药典: 二部[M]. 北京: 中国医药科技出版社, 2020: 132.
6 Afsana , Jain V , Haider N , et al. 3D printing in personalized drug delivery[J]. Cur Pharm Des, 2018, 24 (42): 5062- 5071.
7 Fanous M , Gold S , Hirsch S , et al. Development of immediate release (IR) 3D-printed oral dosage forms with focus on industrial relevance[J]. Eur J Pharm Sci, 2020, 155 (12): 105558.
8 Kempin W , Domsta V , Grathoff G , et al. Immediate release 3D-printed tablets produced via fused deposition modeling of a thermo-sensitive drug[J]. Pharm Res, 2018, 35 (6): 124.
doi: 10.1007/s11095-018-2405-6
9 Wang Y, Sun L, Mei Z, et al. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma[J/OL]. Mater Design, 2020[2021-09-01]. https://doi.org/10.1016/j.matdes.2019.108336.
10 Alomari M , Mohamed FH , Basit AW , et al. Personalised dosing: Printing a dose of one's own medicine[J]. Int J Pharm, 2015, 494 (2): 568- 577.
doi: 10.1016/j.ijpharm.2014.12.006
11 Wening K , Breitkreutz J . Novel delivery device for monolithical solid oral dosage forms for personalized medicine[J]. Int J Pharm, 2010, 395 (1/2): 174- 181.
12 Wening K , Breitkreutz J . Oral drug delivery in personalized medicine: unmet needs and novel approaches[J]. Int J Pharm, 2011, 404 (1/2): 1- 9.
13 Martin KS , McPherson TB , Fontane PE , et al. Independent community pharmacists' perspectives on compounding in contemporary pharmacy education[J]. Am J Pharm Educ, 2009, 73 (3): 54.
doi: 10.5688/aj730354
14 Pietrzak K , Isreb A , Alhnan MA . A flexible-dose dispenser for immediate and extended release 3D printed tablets[J]. Eur J Pharm Biopharm, 2015, 969 (10): 380- 387.
15 Kyobula M , Adedeji A , Alexander MR , et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release[J]. J Control Release, 2017, 261 (9): 207- 215.
16 Konta AA , García-Piña M , Serrano DR . Personalised 3D printed medicines: Which techniques and polymers are more successful[J]. Bioengineering, 2017, 4 (4): 79.
doi: 10.3390/bioengineering4040079
17 Tan DK , Maniruzzaman M , Nokhodchi A . Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (FDM) 3d printing for personalised drug delivery[J]. Pharmaceutics, 2018, 10 (4): 203.
doi: 10.3390/pharmaceutics10040203
18 Okwuosa TC , Soares C , Gollwitzer V , et al. On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing[J]. Eur J Pharm Sci, 2018, 118 (6): 134- 143.
19 Fu JH , Yu X , Jin YG . 3D printing of vaginal rings with per-sonalized shapes for controlled release of progesterone[J]. Int J Pharm, 2018, 539 (1/2): 75- 82.
20 Florence AT , Lee VH . Personalised medicines: More tailored drugs, more tailored delivery[J]. Int J Pharm, 2011, 415 (1/2): 29- 33.
21 Lim SH , Kathuria H , Tan JJY , et al. 3D printed drug delivery and testing systems-a passing fad or the future[J]. Adv Drug Deliv Rev, 2018, 132 (7): 139- 168.
22 Scoutaris N , Ross SA , Douroumis D . 3D printed "starmix" drug loaded dosage forms for paediatric applications[J]. Pharm Res, 2018, 35 (2): 34.
doi: 10.1007/s11095-017-2284-2
23 Wei C , Solanki NG , Vasoya JM , et al. Development of 3D printed tablets by fused deposition modeling using polyvinyl alcohol as polymeric matrix for rapid drug release[J]. J Pharm Sci, 2020, 109 (4): 1558- 1572.
doi: 10.1016/j.xphs.2020.01.015
24 Okwuosa TC , Stefaniak D , Arafat B , et al. A lower temperature 3d printing for the manufacture of patient-specific immediate release tablets[J]. Pharm Res, 2016, 33 (11): 2704- 2712.
doi: 10.1007/s11095-016-1995-0
25 Kollamaram G , Croker DM , Walker GM , et al. Low temperature fused deposition modeling 3D printing of thermolabile drugs[J]. Int J Pharm, 2018, 545 (1/2): 144- 152.
[1] 周华,王仁吉,刘忠军,刘晓光,吴奉梁,党礌,韦峰. 3D打印人工椎体在颈椎脊索瘤全脊椎切除术中的应用[J]. 北京大学学报(医学版), 2023, 55(1): 144-148.
[2] 李志胜,钱浩楠,范田园. 熔融沉积成型3D打印卡托普利与氢氯噻嗪复方片剂的制备与体外评价[J]. 北京大学学报(医学版), 2022, 54(3): 572-577.
[3] 孙玉春,郭雨晴,陈虎,邓珂慧,李伟伟. 口腔精准仿生修复技术的自主创新研发与转化[J]. 北京大学学报(医学版), 2022, 54(1): 7-12.
[4] 李君,刘旭红,王工,程程,庄洪卿,杨瑞杰. 手臂位置对射波刀放射治疗脊柱肿瘤患者的剂量学影响[J]. 北京大学学报(医学版), 2022, 54(1): 182-186.
[5] 陈迪,徐翔宇,汪明睿,李芮,臧根奥,张悦,钱浩楠,闫光荣,范田园. 熔融沉积成型3D打印盐酸维拉帕米胃漂浮制剂的制备与体外评价[J]. 北京大学学报(医学版), 2021, 53(2): 348-354.
[6] 孙海涛,杨瑞杰,江萍,姜伟娟,李金娜,孟娜,王俊杰. 乳腺癌保乳术后容积旋转调强和切线野调强放疗的剂量学比较[J]. 北京大学学报(医学版), 2018, 50(1): 188-192.
[7] 叶克强,黄明伟,李君利,唐劲天,张建国. 125I放射性粒子在骨介质中剂量分布的蒙特卡罗模拟[J]. 北京大学学报(医学版), 2018, 50(1): 131-135.
[8] 张达,王林川,周彦恒,刘晓默,李晶. 3D打印间接粘接托槽精度[J]. 北京大学学报(医学版), 2017, 49(4): 704-708.
[9] 王圣林,杨钟玮,闫明,刘忠军. 术中CT引导下寰枢椎复位、固定[J]. 北京大学学报(医学版), 2017, 49(3): 512-517.
[10] 郭福新,姜玉良,吉喆,彭冉,孙海涛,王俊杰. 3D打印非共面模板辅助CT引导125Ⅰ粒子植入治疗锁骨上复发转移癌的剂量学研究[J]. 北京大学学报(医学版), 2017, 49(3): 506-511.
[11] 冯雪茹,刘梅林,刘芳,范琰,田清平. 阿司匹林剂量对高龄老年患者血小板功能的影响[J]. 北京大学学报(医学版), 2016, 48(5): 835-840.
[12] 王庆国,李晓梅,张敏,李航,温冰,李洪振,高献书. 107例瘢痕疙瘩术后两种分割剂量放疗疗效分析[J]. 北京大学学报(医学版), 2014, 46(1): 169-172.
[13] 丁艳苓, 姚婉贞, 郑杰, 朱元莉, 刘政. 白三烯B4在慢性阻塞性肺疾病中的变化与氨茶碱对其的影响[J]. 北京大学学报(医学版), 2005, 37(4): 393-397.
[14] 王智瑛, 张强. 鲑鱼降钙素大鼠肺部给药系统的研究[J]. 北京大学学报(医学版), 2003, 35(3): 329-332.
[15] 陈育红, 黄晓军, 许兰平, 张耀臣, 任汉云, 高志勇, 郭乃榄, 陆道培. 异基因造血干细胞移植中甲氨蝶呤3次与4次给药的比较[J]. 北京大学学报(医学版), 2003, 35(2): 215-216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王学庆, 万有, 于英心, 韩济生. 关节炎大鼠背根神经节细胞的膜电生理学特征[J]. 北京大学学报(医学版), 2001, 33(1): 50 -53 .
[2] 唐志慧, 曾祥龙. 恒牙早期正常骨面型青少年上气道形态和舌骨位置的X线头影测量研究[J]. 北京大学学报(医学版), 2002, 34(2): 140 -143 .
[3] 关志忱, 魏本林, 孟作为. 远程无线排尿日记开发及20例年轻人客观排尿情况报告[J]. 北京大学学报(医学版), 2010, 42(4): 476 -479 .
[4] 张春丽, 王荣福, 李太华, 付占立. 新型有机锗倍半氧化物的抗肿瘤活性及其在荷瘤裸鼠的体内分布[J]. 北京大学学报(医学版), 2008, 40(2): 208 -210 .
[5] 胡维亨, 任军. 人乙型肝炎病毒DNA阳性血清对人骨髓间充质干细胞向肝细胞分化的影响[J]. 北京大学学报(医学版), 2008, 40(5): 459 -464 .
[6] 王军, 肖水芳, 秦永, 王全桂, 陈丽. 以面神经麻痹为首诊表现的Wegener肉芽肿病一例[J]. 北京大学学报(医学版), 2007, 39(4): 434 -436 .
[7] 柳晓辉, 那加, 刘玲玲, 罗斌. 头颈部血管肉瘤3例[J]. 北京大学学报(医学版), 2001, 33(3): 288 -289 .
[8] 张震康. 口腔医学科学研究的重要进展和方向[J]. 北京大学学报(医学版), 2002, 34(2): 97 -98 .
[9] 梁成, 王兴, 伊彪, 李自力, 王晓霞. 骨性颞下颌关节强直伴小颌畸形及阻塞性睡眠呼吸暂停综合征的牵引成骨治疗[J]. 北京大学学报(医学版), 2002, 34(2): 112 -116 .
[10] 张勇, 栾庆先. 牙周维护治疗在保持牙周长期疗效中的作用[J]. 北京大学学报(医学版), 2011, 43(1): 29 -33 .