北京大学学报(医学版) ›› 2023, Vol. 55 ›› Issue (2): 254-261. doi: 10.19723/j.issn.1671-167X.2023.02.008

• 论著 • 上一篇    下一篇

子宫内膜癌微卫星不稳定性分析: 微小微卫星变换的意义

梁丽,李鑫,农琳,董颖,张继新,李东,李挺*()   

  1. 北京大学第一医院病理科, 北京 100034
  • 收稿日期:2022-09-29 出版日期:2023-04-18 发布日期:2023-04-12
  • 通讯作者: 李挺 E-mail:lixiaoting12@hotmail.com

Analysis of microsatellite instability in endometrial cancer: The significance of minimal microsatellite shift

Li LIANG,Xin LI,Lin NONG,Ying DONG,Ji-xin ZHANG,Dong LI,Ting LI*()   

  1. Department of Pathology, Peking University First Hospital, Beijing 100034, China
  • Received:2022-09-29 Online:2023-04-18 Published:2023-04-12
  • Contact: Ting LI E-mail:lixiaoting12@hotmail.com

摘要:

目的: 对比结直肠癌(colorectal cancer, CRC), 评估子宫内膜癌(endometrial cancer, EMC)微卫星不稳定性(microsatellite instability, MSI)改变的特点。方法: 收集228例EMC和770例CRC进行对比分析。采用免疫组织化学(immunohistochemistry, IHC)方法检测错配修复缺陷(deficient mismatch repair, dMMR)蛋白表达缺失, 采用PCR及毛细管电泳片段分析法检测MSI(MSI-PCR), MSI-PCR采用5个单核苷酸位点(BAT-25、BAT-26、NR-21、NR-24和MONO-27)。结果: EMC中, 27.19%(62/228例)为dMMR, 显著高于CRC(7.79%, 60/770例), 且4例dMMR-EMC和2例dMMR-CRC呈错配修复(mismatch repair, MMR)蛋白亚克隆表达。MSI-PCR检测依据显著微卫星变换判读标准, EMC的结果显示: 16.23%(37/228例)为高度MSI, 2.63%(6/228例)为低度MSI, 81.14%(185/228例)为微卫星稳定型, MMR-IHC与MSI-PCR两种评估方法的不一致率为11.84%(27/228例); CRC的结果显示: 8.05%(62/770例)为高度MSI, 0.13%(1/770例)为低度MSI, 91.82%(707/770例)为微卫星稳定型, 两种评估方法的不一致率仅为0.52%(4/770例)。而依据微小微卫星变换结果判读, 12例EMC发现微小微卫星变换(8例dMMR/微卫星稳定型和4例dMMR/低度MSI), 被评估为dMMR/高度MSI, 因此, 高度MSI型EMC为21.49%(49/228例), 两种方法的不一致率降至6.58%(15/228例)。CRC中未见微小微卫星变换。与显著微卫星变换EMC组相比, 微小微卫星变换EMC组的患者年龄偏小, 肿瘤分化更好, 国际妇产科联盟(International Fede-ration of Gyne-cology and Obstetrics, FIGO)分期更早。两组间组织学类型及FIGO分期的差异有统计学意义(P < 0.001, P=0.006)。结论: EMC易发生微小微卫星变换, MSI-PCR检测结果的判读不应忽视微小微卫星变换, MMR-IHC和MSI-PCR互补联合检测是捕获dMMR肿瘤最敏感和特异的方法。

关键词: 子宫内膜癌, 微卫星不稳定性, 生物标志物, 肿瘤, 结直肠肿瘤

Abstract:

Objective: To analyze the differences and characteristics of microsatellite instability (MSI) in endometrial cancer (EMC), by using colorectal cancer (CRC) as control. Methods: In the study, 228 cases of EMC were collected. For comparative analysis, 770 cases of CRC were collected. Mismatch repair (MMR) expression was detected by immunohistochemistry (IHC), and microsatellite instability (MSI) was analyzed by PCR and capillary electrophoresis fragment analysis (MSI-PCR). MSI-PCR was detected using five mononucleotide repeat markers: BAT-25, BAT-26, NR-21, NR-24, and MONO-27. Results: In EMC, we found 27.19% (62/228) of deficient mismatch repair (dMMR) using IHC, significantly higher than CRC (7.79%, 60/770). Meanwhile, subclonal expression of MMR protein was found in 4 cases of dMMR-EMC and 2 cases of dMMR-CRC. According to the criteria of major micro-satellite shift, we found 16.23% (37/228) of MSI-high (MSI-H), 2.63% (6/228) of MSI-low (MSI-L), and 81.14% (185/228) of microsatellite stability (MSS) in EMC using MSI-PCR. The discor-dance rate between MMR-IHC and MSI-PCR in EMC was 11.84% (27/228). In CRC, we found 8.05% (62/770) of MSI-H, 0.13% (1/770) of MSI-L, and 91.82% (707/770) of MSS. The discordance rate between MMR-IHC and MSI-PCR in CRC was only 0.52% (4/770). However, according to the criteria of minimal microsatellite shift, 12 cases of EMC showed minimal microsatellite shift including 8 cases of dMMR/MSS and 4 cases of dMMR/MSI-L and these cases were ultimately evaluated as dMMR/MSI-H. Then, 21.49% (49/228) of EMC showed MSI-H and the discordance rate MMR-IHC and MSI-PCR in EMC decreased to 6.58% (15/228). No minimal microsatellite shift was found in CRC. Compared with EMC group with major microsatellite shift, cases with minimal microsatellite shift showed younger age, better tumor differentiation, and earlier International Federation of Gynecology and Obstetrics (FIGO) stage. There were significant differences in histological variant and FIGO stage between the two groups (P < 0.001, P=0.006). Conclusion: EMC was more prone to minimal microsatellite shift, which should not be ignored in the interpretation of MSI-PCR results. The combined detection of MMR-IHC and MSI-PCR is the most sensitive and specific method to capture MSI tumors.

Key words: Endometrial cancer, Microsatellite instability, Biomarkers, tumor, Colorectal neoplasms

中图分类号: 

  • R737.33

表1

EMC与CRC的MMR-IHC与MSI-PCR检测结果一致性比较"

Items EMC (n=228) CRC (n=770)
Age/years, range (media) 27-89 (56) 24-94 (63)
Gender
    Male 0 508 (65.97%)
    Female 228 (100.00%) 262 (34.03%)
MMR-IHC 62 (27.19%) 60 (7.79%)
    MLH1 (-) 1 (0.44%) 0
    PMS2 (-) 3 (1.32%) 3 (0.39%)
    MSH2 (-) 4 (1.75%) 2 (0.26%)
    MSH6 (-) 9 (3.95%) 5 (0.65%)
    MLH1/PMS2 (-) 40 (17.54%) 41 (5.32%)
    MSH2/MSH6 (-) 5 (2.19%) 9 (1.17%)
MSI-PCR (major microsatellite shift)
    MSI-H 37 (16.23%) 62 (8.05%)
    MSI-L 6 (9.68%) 1 (0.13%)
    MSS 185 (81.14%) 707 (91.82%)
MSI-PCR (minimal microsatellite shift)
    MSI-H 49 (21.49%)
    MSI-L 2 (0.88%)
    MSS 177 (77.63%)
Discordance (major microsatellite shift) 27 (11.84%) 4 (0.52%)
Discordance (minimal microsatellite shift) 15 (6.58%) 4 (0.52%)

图1

dMMR型子宫内膜癌及结直肠癌病例"

图2

MMR-IHC的亚克隆表达"

图3

MSI-PCR检测结果"

图4

微小微卫星变换在5个单核苷酸位点(BAT-26、NR-21、BAT-25、MONO-27、NR-24)的发生频率"

图5

228例子宫内膜癌MMR-IHC及MSI-PCR检测结果分布图"

表2

子宫内膜癌dMMR/微小微卫星变换组与dMMR/显著微卫星变换组的比较"

Items dMMR/minimal microsatellite shift
(n=12)
dMMR/major microsatellite shift
(n=36)
Age/years, range (media) 48-68 (55) 41-89 (57)
Histology
    Well differentiated EMC 5 (41.67%) 2 (5.56%)
    Moderately differentiated EMC 4 (33.33%) 17 (47.22%)
    Poorly differentiated EMC 3 (25.00%) 11 (30.56%)
    Serous carcinoma 0 1 (2.78%)
    Clear cell carcinoma 0 1 (2.78%)
    Mixed carcinoma 0 0
    Dedifferentiated carcinoma 0 1 (2.78%)
    Undifferentiated carcinoma 0 1 (2.78%)
    Carcinosarcoma 0 2 (5.56%)
FIGO stage
    ⅠA 11 (91.67%) 20 (55.56%)
    ⅠB 1 (8.33%) 10 (27.78%)
    Ⅱ 0 4 (11.11%)
    ⅢC1 0 1 (2.78%)
    ⅢC2 0 1 (2.78%)
dMMR
    MLH1 (-) 0 1 (2.78%)
    PMS2 (-) 1 (8.33%) 0
    MSH2 (-) 0 4 (11.11%)
    MSH6 (-) 2 (16.67%) 2 (5.56%)
    MLH1/PMS2 (-) 9 (75.00%) 24 (66.67%)
    MSH2/MSH6 (-) 0 5 (13.89%)

表3

子宫内膜癌dMMR/微小微卫星变换组与dMMR/显著微卫星变换组的组织学类型及FIGO分期比较"

Items dMMR/minimal microsatellite shift dMMR/major microsatellite shift P
Histology, n
    Well differentiated group 11 2 < 0.001
    Poorly differentiated group 15 34
FIGO stage, n
    ⅠA 23 20 0.006
    ⅠB/Ⅱ/ⅢC/ⅢC2 3 16
1 Yamamoto H , Imai K . Microsatellite instability: An update[J]. Arch Toxicol, 2015, 89 (6): 899- 921.
doi: 10.1007/s00204-015-1474-0
2 Baretti M , Le DT . DNA mismatch repair in cancer[J]. Pharmacol Ther, 2018, 189, 45- 62.
doi: 10.1016/j.pharmthera.2018.04.004
3 Lynch HT , Shaw MW , Magnuson CW , et al. Hereditary factors in cancer. Study of two large midwestern kindreds[J]. Arch Intern Med, 1966, 117 (2): 206- 212.
doi: 10.1001/archinte.1966.03870080050009
4 Dudley JC , Lin MT , Le DT , et al. Microsatellite instability as a biomarker for PD-1 blockade[J]. Clin Cancer Res, 2016, 22 (4): 813- 820.
doi: 10.1158/1078-0432.CCR-15-1678
5 Kandoth C , Schultz N , Cherniack AD , et al. Integrated genomic characterization of endometrial carcinoma[J]. Nature, 2013, 497 (7447): 67- 73.
doi: 10.1038/nature12113
6 Benson AB , Venook AP , Al-Hawary MM , et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19 (3): 329- 359.
doi: 10.6004/jnccn.2021.0012
7 Koh WJ , Abu-Rustum NR , Bean S , et al. Uterine neoplasms, version 1.2018, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2018, 16 (2): 170- 199.
doi: 10.6004/jnccn.2018.0006
8 Libera L , Sahnane N , Pepe F , et al. Critical aspects of micro-satellite instability testing in endometrial cancer: A comparison study[J]. Hum Pathol, 2022, 128, 134- 140.
doi: 10.1016/j.humpath.2022.07.014
9 Tafe LJ , Riggs ER , Tsongalis GJ . Lynch syndrome presenting as endometrial cancer[J]. Clin Chem, 2014, 60 (1): 111- 121.
doi: 10.1373/clinchem.2013.206888
10 Recommendations from the EGAPP Working Group . Genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives[J]. Genet Med, 2009, 11 (1): 35- 41.
doi: 10.1097/GIM.0b013e31818fa2ff
11 Wu X , Snir O , Rottmann D , et al. Minimal microsatellite shift in microsatellite instability high endometrial cancer: A significant pitfall in diagnostic interpretation[J]. Mod Pathol, 2019, 32 (5): 650- 658.
doi: 10.1038/s41379-018-0179-3
12 Wang Y , Shi C , Eisenberg R , et al. Differences in microsatellite instability profiles between endometrioid and colorectal cancers: A potential cause for false-negative results?[J]. J Mol Diagn, 2017, 19 (1): 57- 64.
doi: 10.1016/j.jmoldx.2016.07.008
13 Longacre TA , Broaddus R , Chuang LT , et al. Template for reporting results of biomarker testing of specimens from patients with carcinoma of the endometrium[J]. Arch Pathol Lab Med, 2017, 141 (11): 1508- 1512.
doi: 10.5858/arpa.2016-0450-CP
14 Cortes-Ciriano I , Lee S , Park WY , et al. A molecular portrait of microsatellite instability across multiple cancers[J]. Nat Commun, 2017, 8, 15180.
doi: 10.1038/ncomms15180
15 Guyot D'Asnières , De Salins A , Tachon G , Cohen R , et al. Discordance between immunochemistry of mismatch repair proteins and molecular testing of microsatellite instability in colorectal cancer[J]. ESMO Open, 2021, 6 (3): 100120.
doi: 10.1016/j.esmoop.2021.100120
16 Ferguson SE , Aronson M , Pollett A , et al. Performance characte-ristics of screening strategies for Lynch syndrome in unselected women with newly diagnosed endometrial cancer who have under-gone universal germline mutation testing[J]. Cancer, 2014, 120 (24): 3932- 3939.
doi: 10.1002/cncr.28933
17 McConechy MK , Talhouk A , Li-Chang HH , et al. Detection of DNA mismatch repair (MMR) deficiencies by immunohistoche-mistry can effectively diagnose the microsatellite instability (MSI) phenotype in endometrial carcinomas[J]. Gynecol Oncol, 2014, 137 (2): 306- 310.
18 Marshman E , Booth C , Potten CS . The intestinal epithelial stem cell[J]. Bioessays, 2002, 24 (1): 91- 98.
doi: 10.1002/bies.10028
19 Gargett CE , Nguyen HP , Ye L . Endometrial regeneration and endometrial stem/progenitor cells[J]. Rev Endocr Metab Disord, 2012, 13 (4): 235- 251.
doi: 10.1007/s11154-012-9221-9
20 Metcalf AM , Spurdle AB . Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: A literature review[J]. Fam Cancer, 2014, 13 (1): 1- 12.
doi: 10.1007/s10689-013-9671-6
21 Schweizer P , Moisio AL , Kuismanen SA , et al. Lack of MSH2 and MSH6 characterizes endometrial but not colon carcinomas in hereditary nonpolyposis colorectal cancer[J]. Cancer Res, 2001, 61 (7): 2813- 2815.
22 Hampel H , Panescu J , Lockman J , et al. Comment on: Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients[J]. Cancer Res, 2007, 67 (19): 9603.
doi: 10.1158/0008-5472.CAN-07-2308
23 Zhang L . Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part Ⅱ. The utility of microsatellite instability testing[J]. J Mol Diagn, 2008, 10 (4): 301- 307.
doi: 10.2353/jmoldx.2008.080062
24 Stelloo E , Jansen AML , Osse EM , et al. Practical guidance for mismatch repair-deficiency testing in endometrial cancer[J]. Ann Oncol, 2017, 28 (1): 96- 102.
doi: 10.1093/annonc/mdw542
25 Ta RM , Hecht JL , Lin DI . Discordant loss of mismatch repair proteins in advanced endometrial endometrioid carcinoma compared to paired primary uterine tumors[J]. Gynecol Oncol, 2018, 151 (3): 401- 406.
doi: 10.1016/j.ygyno.2018.10.012
[1] 森本智惠子,王益勤,周蓉,王建六. 子宫内膜非典型增生及子宫内膜癌患者保留生育功能治疗的临床研究[J]. 北京大学学报(医学版), 2022, 54(5): 936-942.
[2] 丁婷婷,曾楚雄,胡丽娜,余明华. 基于癌症基因组图谱数据库结直肠癌免疫细胞浸润预测模型的建立[J]. 北京大学学报(医学版), 2022, 54(2): 203-208.
[3] 王晓,贺丹,李文婷,阿迪拉·斯依提,韩蕊,董颖. 144例维吾尔族与汉族女性子宫内膜癌微小RNA表达特点及临床意义[J]. 北京大学学报(医学版), 2020, 52(3): 570-577.
[4] 张旭初,张建华,王荣福,范岩,付占立,闫平,赵光宇,白艳霞. 18F-FDG PET/CT联合多种肿瘤标志物在结直肠中分化腺癌术后复发及转移中的应用价值[J]. 北京大学学报(医学版), 2019, 51(6): 1071-1077.
[5] 王小慧,张岩,刘林枝,尚晨光. 二甲双胍与脂联素对子宫内膜癌细胞增殖的作用[J]. 北京大学学报(医学版), 2018, 50(5): 767-773.
[6] 陈杨,王艳荣,石燕,戴广海. 晚期结直肠癌患者一线应用FOLFOX方案化疗引起中性粒细胞减少的预后价值[J]. 北京大学学报(医学版), 2017, 49(4): 669-674.
[7] 刘艳霞,杨雪松,付卫,姚宏伟. 单核苷酸多态性位点rs6983267与溃疡性结肠炎及大肠癌的相关性[J]. 北京大学学报(医学版), 2016, 48(6): 994-999.
[8] 司婧文, 王莉, 巴晓军, 张旭, 董颖, 张继新, 李文婷, 李挺. Lynch综合征临床病理筛查2例及文献回顾[J]. 北京大学学报(医学版), 2015, 47(5): 858-864.
[9] 原春辉,修典荣,葛辉玉,谭石,王行雁,张利,张同琳. 实时虚拟导航系统在结直肠癌肝转移射频消融治疗中的应用[J]. 北京大学学报(医学版), 2013, 45(6): 956-959.
[10] 李传凤, 李军, 白鹏, 吕愈敏. 结直肠腺瘤与患者血脂代谢水平[J]. 北京大学学报(医学版), 2011, 43(3): 432-435.
[11] 汤坚强, 樊庆, 万远廉, 刘玉村, 汪欣, 吴涛, 潘义生, 吴问汉, 朱静. 组织因子/凝血因子Ⅶ在大肠癌中的异位表达及其临床意义[J]. 北京大学学报(医学版), 2009, 41(5): 531-536.
[12] 张耀朋, 吕愈敏, 李军, 韩亚晶, 金珠, 李传凤. 过氧化物酶增殖物激活受体-γ在舒林酸干预治疗大鼠结直肠癌前病变中的作用[J]. 北京大学学报(医学版), 2009, 41(2): 168-173.
[13] 汤坚强, 万远廉, 刘玉村, 戎龙, 汪欣, 吴涛, 潘义生, 朱静. 组织因子/活化凝血Ⅶ因子复合物对大肠癌LoVo细胞系表达基质金属蛋白酶-7的调控作用[J]. 北京大学学报(医学版), 2007, 39(5): 453-457.
[14] 卡马尔, 万远廉, 刘玉村, 汪欣, 崔巍, 王春雷, 陈焕年, 王会元, 朱静. 过氧化物酶增殖物激活受体γ配体曲格列酮对大肠癌细胞生长的影响[J]. 北京大学学报(医学版), 2006, 38(4): 385-388.
[15] 崔巍, 汪欣, 刘玉村, 万远廉, 郭宏杰, 朱静. HIC-5/ARA55在人大肠癌中的表达及其作用机制[J]. 北京大学学报(医学版), 2006, 38(3): 280-283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 钟金晟, 欧阳翔英, 梅芳, 邓旭亮, 曹采方. 多孔β-磷酸三钙/胶原支架与犬牙周膜细胞三维复合体的构建[J]. 北京大学学报(医学版), 2007, 39(5): 507 -510 .
[2] 张奇, 罗国安, 邓英杰. 均匀设计法制备5-氟尿嘧啶脂质体及其稳定性[J]. 北京大学学报(医学版), 2002, 34(1): 64 -67 .
[3] 范少光. 向王志均院士学习[J]. 北京大学学报(医学版), 2000, 32(4): 300 .
[4] 李智岗, 黄景香, 李顺宗, 赵俊京, 时高峰, 梁国庆, 王红光, 韩捧银, 王琦, 谷铁树. 肝转移瘤的血供[J]. 北京大学学报(医学版), 2008, 40(2): 146 -150 .
[5] 冯现竹, 侯平, 朱厉, 于磊, 张宏. 转铁蛋白受体基因多态性与IgA肾病易感性及临床病理表型的相关性[J]. 北京大学学报(医学版), 2008, 40(4): 369 -373 .
[6] 王倩, 张翼, 陆敏, 管又飞, 朱毅, 王悦. 高盐诱导的高血压大鼠模型肾组织可溶性表氧化物酶高表达及其作用初步探讨[J]. 北京大学学报(医学版), 2010, 42(2): 126 -130 .
[7] 丁昊炜, 任汉云, 郭乃榄, 黄晓军, 许兰平, 张耀臣, 陆道培. 造血干细胞移植患者巨细胞病毒感染危险因素和疗效分析[J]. 北京大学学报(医学版), 2003, 35(6): 596 -599 .
[8] 赵宝红, 白薇, 冯海兰, 李盛琳. 有血清和无血清培养基联合法培养原代人牙龈上皮细胞[J]. 北京大学学报(医学版), 2004, 36(1): 102 -105 .
[9] 耿彬, 常林, 杜军保, 唐朝枢. 防治高同型半胱氨酸血症的新策略[J]. 北京大学学报(医学版), 2005, 37(2): 215 -219 .
[10] 陈亚红, 姚婉贞, 赵鸣武, 庞永政, 唐朝枢. 哮喘气道重塑中钙调神经磷酸酶与蛋白激酶活性的相互调节[J]. 北京大学学报(医学版), 2005, 37(6): 599 -602 .