北京大学学报(医学版) ›› 2023, Vol. 55 ›› Issue (3): 392-399. doi: 10.19723/j.issn.1671-167X.2023.03.002

• 论著 • 上一篇    下一篇

纳米二氧化钛颗粒对人肝癌细胞HepG2中circRNA表达谱的影响

史佳琪,马莺,张奕,陈章健,贾光*()   

  1. 北京大学公共卫生学院劳动卫生与环境卫生学系,食品安全毒理学研究与评价北京市重点实验室,北京 100191
  • 收稿日期:2023-02-06 出版日期:2023-06-18 发布日期:2023-06-12
  • 通讯作者: 贾光 E-mail:jiaguangjia@bjmu.edu.cn
  • 基金资助:
    国家自然科学基金(81703257);科技部国家重点研发计划(2017YFC1600200)

Effects of titanium dioxide nanoparticles on circRNA expression profiles in human hepatocellular carcinoma cells HepG2

Jia-qi SHI,Ying MA,Yi ZHANG,Zhang-jian CHEN,Guang JIA*()   

  1. Department of Occupational and Environmental Health Sciences, Peking University School of Public Health; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
  • Received:2023-02-06 Online:2023-06-18 Published:2023-06-12
  • Contact: Guang JIA E-mail:jiaguangjia@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(81703257);the National Key R & D Program of the Ministry of Science and Technology of China(2017YFC1600200)

摘要:

目的: 通过体外细胞实验探讨纳米二氧化钛颗粒(titanium dioxide nanoparticles,TiO2 NPs)对人肝癌细胞(human hepatocellular carcinoma cells, HepG2)中环状核糖核酸(circular ribonucleic acid,circRNA)表达谱的影响,并通过生物信息学分析TiO2 NPs肝细胞毒性的潜在机制。方法: 分别从粒径、形状、团聚状态等方面对TiO2 NPs进行表征,在暴露于0、1.56、3.13、6.25、12.5、25、50、100和200 mg/L TiO2 NPs 24 h或48 h后,利用细胞计数试剂盒(cell counting kit-8,CCK8)检测TiO2 NPs对HepG2的细胞毒性。以0 mg/L(对照组)和100 mg/L(染毒组)的TiO2 NPs处理HepG2细胞48 h后,收集细胞样本,提取RNA并进行测序。筛选出对照组和TiO2 NPs染毒组之间的差异circRNA,通过多变量统计分析差异circRNA靶基因的富集通路。根据测序结果,筛选出显著改变的基因以及显著富集通路中的重要基因,对HepG2细胞进行实时逆转录聚合酶链反应(real-time reverse transcription-polymerase chain reaction,real-time RT-PCR)验证。结果: TiO2 NPs为球形锐钛矿,在无血清培养基中的水合粒径为(323.50±85.44) nm,Zeta电位为(-21.00±0.72) mV。CCK8细胞毒性检测结果发现,随着TiO2 NPs浓度的增加,细胞活力逐渐下降。RNA测序共发现11 478个circRNA,与对照组相比,TiO2 NPs染毒组(100 mg/L)中共有89个差异circRNA,其中59个上调,30个下调。根据日本京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)富集分析,差异circRNA的靶向基因主要富集在脂肪酸降解、范可尼贫血(Fanconi anemia)通路以及脂肪酸代谢等通路上。Real-time RT-PCR验证结果显示,代表性差异circRNA(包括circRNA.6730、circRNA.3650和circRNA.4321)的相对表达量在TiO2 NPs染毒组和对照组之间差异有统计学意义,与测序结果一致。结论: TiO2 NPs可诱导circRNA表达谱发生改变,提示表观遗传学可能在肝细胞毒性机制中发挥重要作用。

关键词: 二氧化钛纳米颗粒, 肝细胞毒性, 环状RNA, 表观基因组学

Abstract:

Objective: To investigate the effect of titanium dioxide nanoparticles (TiO2 NPs) on the expression profile of circular ribonucleic acid (circRNA) in human hepatocytes through in vitro cell experiments, and to attempt to understand the potential mechanism of hepatotoxicity through bioinformatics analysis. Methods: TiO2 NPs were characterized from the aspects of particle size, shape and agglomeration state. The cell counting kit-8 (CCK8) was used to detect the cytotoxicity of TiO2 NPs against human hepatocellular carcinoma cells (HepG2) after exposure to 0, 1.56, 3.13, 6.25, 12.5, 25, 50, 100, and 200 mg/L TiO2 NPs for 24 h or 48 h. The cells were treated at doses of 0 mg/L TiO2 NPs (control group) and 100 mg/L TiO2 NPs (treatment group), and collected after exposure for 48 h, and then RNA from the extracted cell samples was collected and sequenced. The differential circRNAs between the control and the TiO2 NPs treatment groups were screened, and then the enrichment pathway of the differential circRNA target gene was analyzed by multivariate statistics. According to the sequencing results, significantly altered genes and important genes in the significant enrichment pathways were screened, and real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) was performed to verify the results. Results: TiO2 NPs were spherical anatase with a hydrated particle size of (323.50±85.44) nm and a Zeta potential of (-21.00±0.72) mV in a serum-free medium. The results of the CCK8 cytotoxicity assay showed that with the increase of TiO2 NPs concentration, cell viability gradually decreased. A total of 11 478 circRNAs were found by RNA sequencing. Compared with the control groups, TiO2 NPs treatment groups (100 mg/L) had a total of 89 differential circRNAs, of which 59 were up-regulated and 30 were down-regulated. Analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway showed that the targeted genes of differential circRNAs were mainly enriched in fatty acid degradation, Fanconi anemia pathway, and fatty acid metabolism. The expression levels of circRNA.6730, circRNA.3650 and circRNA.4321 were significantly different between the TiO2 NPs treatment group and the control group, which were consistent with the sequencing results. Conclusion: TiO2 NPs can induce changes in circRNA expression profile, and epigenetics may play an important role in the mechanism of hepatotoxicity.

Key words: Titanium dioxide nanoparticles, Hepatotoxicity, circRNA, Epigenomics

中图分类号: 

  • R114

表1

目的基因和内参基因的引物序列"

Target gene Upstream primers (5′-3′) Downstream primers (3′-5′)
circRNA.6730 CTGAACCTTGCTCCGAGAGG GAACTCAGAAACCGCAGGGA
circRNA.3650 AGGGCTCCGCTTTATTTGCT CAGATTCCTAACTGTCTGGAGGG
circRNA.10113 AGACTGAAGGAGCAGTTGCC TCCTCGTGCAAGGATTTCCC
circRNA.4321 CCCAGGGAACCAATCTGTCC CACAGCAAGGCCTGGAGTTA
GAPDH TGCAACGGCGGAAGAAAA ACGAGGCTTTCAATGTTGCC

图1

TiO2 NPs的细胞毒性 *P < 0.05, compared with the 0 mg/L TiO2 NPs group."

图2

TiO2 NPs染毒后的circRNA表达量分析 The perl script was used to classify and plot the predicted circRNA to visualize the composition of circRNA (A). Principal component analysis (B) and OPLS-DA (C) based on the expression of credible circRNA were performed to compare differences between the control group and the treatment group. C1, 0 mg/L TiO2 NPs-control group 1; C2, 0 mg/L TiO2 NPs-control group 2; C3, 0 mg/L TiO2 NPs-control group 3; T1, 100 mg/L TiO2 NPs-treatment group 1; T2, 100 mg/L TiO2 NPs-treatment group 2; T3, 100 mg/L TiO2 NPs-treatment group 3. PC1, the first principal component; PC2, the second principal component; PCo1, the first orthogonal principal component. TiO2 NPs, titanium dioxide nanoparticles; circRNA, circular ribonucleic acid; OPLS-DA, orthogonal projections to latent structures discriminant analysis."

图3

TiO2 NPs染毒后的circRNA差异表达分析 The scatter plot of correlation analysis between the treatment group and the control group intuitively showed the extremely weak positive correlation (A). The volcano plot of differentially expressed genes in the treatment group showed the number of up-regulated and down-regulated genes (B). Cluster analysis heatmaps of the treatment and control groups showed differences in their characteristics (C). SRPBM, spliced reads per billion mapping. Other abbreviations as in Figure 2."

图4

差异circRNA的GO和KEGG富集分析 A, the results of the GO (Gene Ontology) enrichment analysis, with red representing biological processes, green representing cellular components, and blue representing molecular functions. B, the results of the KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis, and the dot size indicated the number of target genes enriched in this pathway, and the larger the shape, the greater the number. The color indicated the rank of the corrected P value, the greener the color, the larger the P value, and the redder the color, the smaller the P value. TGF, transforming growth factor; MAPK, mitogen activated protein kinase; Other abbreviations as in Figure 2."

图5

TiO2 NPs染毒48 h后4个差异表达基因的real-time RT-PCR验证结果 * P < 0.05, compared with the control group. TiO2 NPs, titanium dioxide nanoparticles; circRNA, circular ribonucleic acid; real-time RT-PCR, real-time reverse transcription-polymerase chain reaction."

1 Gopinath KP , Madhav NV , Krishnan A , et al. Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review[J]. J Environ Manage, 2020, 270, 110906.
doi: 10.1016/j.jenvman.2020.110906
2 Shand M , Anderson JA . Aqueous phase photocatalytic nitrate destruction using titania based materials: Routes to enhanced performance and prospects for visible light activation[J]. Catal Sci Technol, 2013, 3 (4): 879- 899.
doi: 10.1039/c3cy20851f
3 ÇeșmeliS, Biray AvciC. Application of titanium dioxide (TiO2) nanoparticles in cancer therapies[J]. J Drug Target, 2019, 27 (7): 762- 766.
4 Lingaraju K , Basavaraj RB , Jayanna K , et al. Biocompatible fabrication of TiO2 nanoparticles: Antimicrobial, anticoagulant, antiplatelet, direct hemolytic and cytotoxicity properties[J]. Inorg Chem Commun, 2021, 127, 108505.
doi: 10.1016/j.inoche.2021.108505
5 Wang P , Xiong Z , Xiong H , et al. Synergistic effects of modified TiO2/multifunctionalized graphene oxide nanosheets as functional hybrid nanofiller in enhancing the interface compatibility of PLA/starch nanocomposites[J]. J Appl Polym Sci, 2020, 137 (37): 49094.
doi: 10.1002/app.49094
6 Siripatrawan U , Kaewklin P . Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging[J]. Food Hydrocolloid, 2018, 84, 125- 134.
doi: 10.1016/j.foodhyd.2018.04.049
7 Jing L , Zhou W , Tian G , et al. Surface tuning for oxide-based nanomaterials as efficient photocatalysts[J]. Chem Soc Rev, 2013, 42 (24): 9509- 9549.
doi: 10.1039/c3cs60176e
8 Shukla RK , Sharma V , Pandey AK , et al. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells[J]. Toxicol In Vitro, 2011, 25 (1): 231- 241.
doi: 10.1016/j.tiv.2010.11.008
9 EFSA Panel on Food Additives and Flavourings (FAF) , Younes M , Aquilina G , et al. Safety assessment of titanium dioxide (E171) as a food additive[J]. EFSA J, 2021, 19 (5): e06585.
10 Meena R , Paulraj R . Oxidative stress mediated cytotoxicity of TiO2 nano anatase in liver and kidney of Wistar rat[J]. Toxicol Environ Chem, 2012, 94 (1): 146- 163.
doi: 10.1080/02772248.2011.638441
11 Abbasi-Oshaghi E , Mirzaei F , Pourjafar M . NLRP3 inflammasome, oxidative stress, and apoptosis induced in the intestine and liver of rats treated with titanium dioxide nanoparticles: In vivo and in vitro study[J]. Int J Nanomed, 2019, 14, 1919- 1936.
doi: 10.2147/IJN.S192382
12 Shukla RK , Kumar A , Vallabani NVS , et al. Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice[J]. Nanomedicine (Lond), 2014, 9 (9): 1423- 1434.
doi: 10.2217/nnm.13.100
13 Jeck WR , Sorrentino JA , Wang K , et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19 (2): 141- 157.
doi: 10.1261/rna.035667.112
14 Li Z , Huang C , Bao C , et al. Exon-intron circular RNAs regulate transcription in the nucleus[J]. Nat Struct Mol Biol, 2015, 22 (3): 256- 264.
doi: 10.1038/nsmb.2959
15 Zeng Y , Du WW , Wu Y , et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair[J]. Theranostics, 2017, 7 (16): 3842- 3855.
doi: 10.7150/thno.19764
16 Du WW , Yang W , Liu E , et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2[J]. Nucleic Acids Res, 2016, 44 (6): 2846- 2858.
doi: 10.1093/nar/gkw027
17 Abouhaidar MG , Venkataraman S , Golshani A , et al. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt[J]. Proc Natl Acad Sci USA, 2014, 111 (40): 14542- 14547.
doi: 10.1073/pnas.1402814111
18 周迪, 陈章健, 胡贵平, 等. 纳米二氧化钛亚急性经口暴露对大鼠氧化/抗氧化生物标志和炎性因子的影响[J]. 北京大学学报(医学版), 2020, 52 (5): 821- 827.
doi: 10.19723/j.issn.1671-167X.2020.05.005?
19 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 医疗器械生物学评价第5部分: 体外细胞毒性试验[S]. 北京: 中国标准出版社, 2017.
20 Geraets L , Oomen AG , Krystek P , et al. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats[J]. Part Fibre Toxicol, 2014, 11 (1): 1- 21.
doi: 10.1186/1743-8977-11-1
21 Chen Z , Zheng P , Han S , et al. Tissue-specific oxidative stress and element distribution after oral exposure to titanium dioxide nanoparticles in rats[J]. Nanoscale, 2020, 12 (38): 20033- 20046.
doi: 10.1039/D0NR05591C
22 Kitchin KT , Richards JA , Robinette BL , et al. Biochemical effects of some CeO(2), SiO(2), and TiO(2) nanomaterials in HepG2 cells[J]. Cell Biol Toxicol, 2019, 35 (2): 129- 145.
doi: 10.1007/s10565-018-9445-x
23 Vineis P , Chatziioannou A , Cunliffe VT , et al. Epigenetic memory in response to environmental stressors[J]. FASEB J, 2017, 31 (6): 2241- 2251.
doi: 10.1096/fj.201601059RR
24 Lu X , Miousse IR , Pirela SV , et al. Short-term exposure to engineered nanomaterials affects cellular epigenome[J]. Nanotoxi-cology, 2016, 10 (2): 140- 150.
25 Gao F , Ma NJ , Zhou H , et al. Zinc oxide nanoparticles-induced epigenetic change and G2/M arrest are associated with apoptosis in human epidermal keratinocytes[J]. Int J Nanomedicine, 2016, 11, 3859- 3874.
doi: 10.2147/IJN.S107021
26 Rodosthenous RS , Coull BA , Lu Q , et al. Ambient particulate matter and microRNAs in extracellular vesicles: A pilot study of older individuals[J]. Part Fibre Toxicol, 2016, 13 (1): 1- 13.
27 Jayaram DT , Payne CK . Intracellular generation of superoxide by TiO(2) nanoparticles decreases histone deacetylase 9 (HDAC9), an epigenetic modifier[J]. Bioconjug Chem, 2020, 31 (5): 1354- 1361.
doi: 10.1021/acs.bioconjchem.0c00091
28 Li J , Qi J , Tang Y , et al. A nanodrug system overexpressed circRNA_0001805 alleviates nonalcoholic fatty liver disease via miR-106a-5p/miR-320a and ABCA1/CPT1 axis[J]. J Nanobiotechnol, 2021, 19 (1): 363.
doi: 10.1186/s12951-021-01108-8
29 Gaudet P , Livstone MS , Lewis SE , et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium[J]. Brief Bioinform, 2011, 12 (5): 449- 462.
doi: 10.1093/bib/bbr042
30 Federici G , Shaw BJ , Handy RD . Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects[J]. Aquat Toxicol, 2007, 84 (4): 415- 430.
doi: 10.1016/j.aquatox.2007.07.009
31 Volkovova K , Handy RD , Staruchova M , et al. Health effects of selected nanoparticles in vivo: Liver function and hepatotoxicity following intravenous injection of titanium dioxide and Na-oleate-coated iron oxide nanoparticles in rodents[J]. Nanotoxicology, 2015, 9 (Suppl 1): 95- 105.
32 Kamijo T , Aoyama T , Komiyama A , et al. Structural analysis of cDNAs for subunits of human mitochondrial fatty acid beta-oxidation trifunctional protein[J]. Biochem Biophys Res Commun, 1994, 199 (2): 818- 825.
doi: 10.1006/bbrc.1994.1302
33 Peake JD , Noguchi E . Fanconi anemia: Current insights regarding epidemiology, cancer, and DNA repair[J]. Hum Genet, 2022, 141 (12): 1811- 1836.
doi: 10.1007/s00439-022-02462-9
34 Wang R , Zhang J , Cui X , et al. Multimolecular characteristics and role of BRCA1 interacting protein C-terminal helicase 1 (BRIP1) in human tumors: A pan-cancer analysis[J]. World J Surg Oncol, 2023, 21 (1): 91.
doi: 10.1186/s12957-022-02877-8
[1] 许云屹,苏征征,郑林茂,张孟尼,谭珺娅,杨亚蓝,张梦鑫,徐苗,陈铌,陈雪芹,周桥. 转录通读环状RNA rt-circ-HS促进低氧诱导因子1α表达和肾癌细胞增殖与侵袭[J]. 北京大学学报(医学版), 2023, 55(2): 217-227.
[2] 王婷婷,韩影,高芳芳,叶磊,张育军. 环状RNA circ-SOD2对肠上皮屏障和溃疡性结肠炎的作用[J]. 北京大学学报(医学版), 2019, 51(5): 805-812.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!