Journal of Peking University (Health Sciences) ›› 2021, Vol. 53 ›› Issue (6): 1083-1087. doi: 10.19723/j.issn.1671-167X.2021.06.013

Previous Articles     Next Articles

Serum interleukin-2 receptor α as a clinical biomarker in patients with systemic lupus erythematosus

TIAN Jia-yi,ZHANG Xia(),CHENG Gong,LIU Qing-hong,WANG Shi-yang,HE Jing()   

  1. Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing 100044, China
  • Received:2021-07-30 Online:2021-12-18 Published:2021-12-13
  • Contact: Xia ZHANG,Jing HE E-mail:haoxiamei@163.com;hejing1105@126.com
  • Supported by:
    Peking University People’s Hospital Research and Development Funds(RS2020-01);National Natural Science Foundation of China(81601417)

Abstract:

Objective: To investigate the clinical relevance of serum interleukin-2 receptor α (IL-2Rα) in patients with systemic lupus erythematosus (SLE). Methods: One hundred and seven SLE patients and 39 healthy controls with comparable age and gender were recruited at Peking University People’s Hospital from January 2019 to December 2020. Complete clinical data in 107 SLE patients at baseline and follow-up were collected. SLE disease activity index 2000 (SLEDAI-2K) was used to assess the disease activity of the SLE patients. The serum level of IL-2Rα in the SLE patients and healthy controls was measured using enzyme-linked immunosorbent assay (ELISA). The association between serum IL-2Rα and clinical and laboratory parameters was investigated. Mann-Whitney U test or t test, Chi-square test and Spearman correlation were used for statistical analysis. Results: The serum IL-2Rα levels were significantly higher in the SLE patients [830.82 (104.2-8 940.48) ng/L], compared with those in the healthy controls [505.1 (78.65-1 711.52) ng/L] (P<0.001). Association analysis showed that the increased serum IL-2Rα was positively associated with SLEDAI-2K scores and anti-nucleosome antibody (r=0.357, P<0.001; r=0.25, P=0.027, respectively). Thirty-six of 107 (33.6%) SLE patients had lupus nephritis. Serum IL-2Rα levels were significantly higher in the patients accompanied with lupus nephritis [1 102.14 (126.52-8 940.48) ng/L] than in the patients without lupus nephritis [743.89 (104.19-4 872.06) ng/L] (P=0.032). The patients in the high IL-2Rα group had more lupus nephritis compared with those in the low IL-2Rα group (40.8% vs. 19.4%, P=0.031). Meanwhile, SLEDAI-2K scores were found significantly higher in the high IL-2Rα group than in the low IL-2Rα group [10 (3-21) vs. 7 (3-16), P=0.001]. With the improvement of disease activity in the SLE patients after conventional treatments, serum levels of IL-2Rα [1 119.1 (372.25-2 608.86) ng/L] in the week 12 decreased significantly compared with the baseline [1 556.73 (373.08-8 940.48) ng/L] (P=0.042). Conclusion: Serum IL-2Rα may be used as a biomarker of disease activity in patients with SLE. There is certain correlation between serum IL-2Rα and renal involvement in SLE.

Key words: Receptor, interleukin-2, Lupus erythematosus, systemic, Lupus nephritis, T-lymphocytes

CLC Number: 

  • R593.24

Figure 1

Correlation between serum IL-2Rα level and clinical significance IL-2Rα, interleukin-2 receptor α; SLE, systemic lupus erythematosus; SLEDAI-2K, SLE disease activity index 2000; AnuA, anti-nucleosome antibo-dy; LN, lupus nephritis. A, serum IL-2Rα level in SLE group was significantly higher than that in control group; B, serum IL-2Rα level was positively correlated with SLEDAI-2K score; C, serum IL-2Rα level was positively correlated with AnuA titer; D, serum IL-2Rα levels in SLE patients with LN were significantly higher than those without LN."

Table 1

Comparison between high IL-2Rα group (≥590.48 ng/L) and low IL-2Rα group (<590.48 ng/L)"

Items High IL-2Rα (n=71) Low IL-2Rα (n=36) P value
Gender,Female/Male 6/65 1/35 0.419
Age/year, median (range) 31 (18-66) 36 (29-52) 0.741
Duration/year, median (range) 2.0 (0.1-23.0) 2.0 (0.2-12.0) 0.355
LN, n (%) 29 (40.8) 7 (19.4) 0.031
SLEDAI-2K, median (range) 10 (3-21) 7 (3-16) 0.001
IgG/(g/L), median (range) 13.7 (1.9-35.9) 16.55 (8.2-29.9) 0.862
C3/(g/L), median (range) 0.453 (0.118-1.46) 0.656 (0.239-0.821) 0.685
C4/(g/L), median (range) 0.117 (0.04-0.544) 0.097 (0.032-0.227) 0.627
Anti-dsDNA/(IU/mL), median (range) 223.98 (25-1 845.6) 277.12 (20-1 665.8) 0.375
AnuA/(IU/mL), median (range) 133.87 (2-1 918.3) 85.72 (2-1 991.9) 0.197
ESR/(mm/h), median (range) 31 (6-110) 40 (11-42) 0.786
CRP/(mg/dL), median (range) 4.65 (1.05-93.2) 2.49 (1.03-10.8) 0.952

Figure 2

Changes of serum IL-2Rα level and SLEDAI-2K before and after treatment in SLE Abbreviations as in Figure 1. A, the serum IL-2Rα level in SLE patients decreased significantly after 12 weeks; B, SLEDAI-2K improved significantly after 12 weeks."

[1] Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus[J]. Nat Immunol, 2020, 21(6):605-614.
doi: 10.1038/s41590-020-0677-6
[2] Ross SH, Cantrell DA. Signaling and function of interleukin-2 in T lymphocytes[J]. Annu Rev Immunol, 2018, 36:411-433.
doi: 10.1146/immunol.2018.36.issue-1
[3] He J, Zhang R, Shao M, et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: A randomised, double-blind, placebo-controlled trial[J]. Ann Rheum Dis, 2020, 79(1):141-149.
[4] He J, Zhang X, Wei Y, et al. Low-dose interleukin-2 treatment selectively modulates CD4(+) T cell subsets in patients with systemic lupus erythematosus[J]. Nat Med, 2016, 22(9):991-993.
doi: 10.1038/nm.4148
[5] Rubin L A, Galli F, Greene WC, et al. The molecular basis for the generation of the human soluble interleukin 2 receptor[J]. Cytokine, 1990, 2(5):330-336.
pmid: 2103332
[6] Dik WA, Heron M. Clinical significance of soluble interleukin-2 receptor measurement in immune-mediated diseases[J]. Neth J Med, 2020, 78(5):220-231.
[7] Luo H, Wang C, Feng M, et al. Microgravity inhibits resting T cell immunity in an exposure time-dependent manner[J]. Int J Med Sci, 2014, 11(1):87-96.
doi: 10.7150/ijms.7651
[8] El-Shafey EM, El-Nagar GF, El-Bendary AS, et al. Serum soluble interleukin-2 receptor alpha in systemic lupus erythematosus[J]. Iran J Kidney Dis, 2008, 2(2):80-85.
pmid: 19377213
[9] Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus[J]. Arthritis Rheum, 1997, 40(9):1725.
[10] Gladman DD, Ibañez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000[J]. J Rheumatol, 2002, 29(2):288-291.
pmid: 11838846
[11] Romero-Diaz J, Isenberg D, Ramsey-Goldman R. Measures of adult systemic lupus erythematosus: Updated version of British Isles Lupus Assessment Group (BILAG 2004), European Consensus Lupus Activity Measurements (ECLAM), Systemic Lupus Activity Measure, Revised (SLAM-R), Systemic Lupus Activity Questionnaire for Population Studies (SLAQ), Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K), and Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI)[J]. Arthritis Care Res (Hoboken), 2011, 63(Suppl 11):S37-S46.
doi: 10.1002/acr.v63.11s
[12] Russell SE, Moore AC, Fallon PG, et al. Soluble IL-2Rα (sCD25) exacerbates autoimmunity and enhances the development of Th17 responses in mice[J]. PLoS One, 2012, 7(10):e47748.
doi: 10.1371/journal.pone.0047748
[13] Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: From molecular mechanisms to human therapy[J]. Nat Rev Immunol, 2018, 18(10):648-659.
[14] Mizui M, Tsokos GC. Targeting regulatory T cells to treat patients with systemic lupus erythematosus[J]. Front Immunol, 2018(9):786.
[15] Laut J, Senitzer D, Petrucci R, et al. Soluble interleukin-2 receptor levels in lupus nephritis[J]. Clin Nephrol, 1992, 38(4):179-184.
pmid: 1424303
[1] GU Yang-chun,LIU Ying,XIE Chao,CAO Bao-shan. Pituitary immune-related adverse events induced by programmed cell death protein 1 inhibitors in advanced lung cancer patients: A report of 3 cases [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 369-375.
[2] Jian-mei ZOU,Li-jun WU,Cai-nan LUO,Ya-mei SHI,Xue WU. Relationship of serum 25- hydroxy vitamin D and systemic lupus erythematosus [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 938-941.
[3] Zheng-fang LI,Xue WU,Li-jun WU,Cai-nan LUO,Ya-mei SHI,Yan ZHONG,Xiao-mei CHEN,Xin-yan MENG. Clinical features of patients with Rhupus syndrome [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 933-937.
[4] MA Xiang-bo,ZHANG Xue-wu,JIA Ru-lin,GAO Ying,LIU Hong-jiang,LIU Yu-fang,LI Ying-ni. Application of lymphocytes test in peripheral blood of patients with systemic sclerosis during the treatment [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 721-727.
[5] XIA Fang-fang,LU Fu-ai,LV Hui-min,YANG Guo-an,LIU Yuan. Clinical characteristics and related factors of systemic lupus erythematosus with interstitial pneumonia [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 266-272.
[6] LIAO Xu-he,WANG Rong-fu,LIU Meng,CHEN Xue-qi,XIONG Yan,NONG Lin,YIN Lei,ZHANG Bing-ye,DU Yu-jing. Semiquantitative parameters of 18F-FDG PET/CT, gene mutation states of epidermal growth factor receptor and anaplastic lymphoma kinase in prognosis evaluation of patients with lung adenocarcinoma [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 246-254.
[7] Jing ZHAO,Feng SUN,Yun LI,Xiao-zhen ZHAO,Dan XU,Ying-ni LI,Yu-hui LI,Xiao-lin SUN. Significance of anti-tubulin-α-1C autoantibody in systemic sclerosis [J]. Journal of Peking University (Health Sciences), 2020, 52(6): 1009-1013.
[8] Qian GUO, Xiao-xu MA, Hui GAO, Lian-jie SHI, Yu-chao ZHONG, Lin-feng XIE, Miao SHAO, Xue-wu ZHANG. Association of Semaphorin 3A with thrombocytopenia in systemic lupus erythematosus [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 892-896.
[9] Guo-hong SONG,Hui-ping LI,Li-jun DI,Ying YAN,Han-fang JIANG,Ling XU,Dong-gui WAN,Ying LI,Mo-pei WANG,Yu XIAO,Ru-yan ZHANG,Ran RAN,Huan WANG. Efficacy and safety of oral pyrotinib in HER2 positive metastatic breast cancer: real-world practice [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 254-260.
[10] Yan GENG,Bo-rui LI,Zhuo-li ZHANG. Musculoskeletal ultrasound findings of symptomatic joints in patients with systemic lupus erythematosus [J]. Journal of Peking University(Health Sciences), 2020, 52(1): 163-168.
[11] Ying-ni LI,Xiao-hong XIANG,Jing ZHAO,Yun LI,Feng SUN,Hong-yan WANG,Ru-lin JIA,Fan-lei HU. Significance of anti-carbamylated fibrinogen antibodies in systemic lupus erythematosus [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1019-1024.
[12] Xiao-peng ZHANG,Wei-yu ZHANG,Fei HUO,Hao HU,Qi WANG,Ke-xin XU. Outcome of surgical management and pathogenesis of female primary bladder neck obstruction [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1052-1055.
[13] Yu-hua WANG,Guo-hua ZHANG,Ling-ling ZHANG,Jun-li LUO,Lan GAO. Adrenal hemorrhage in a patient with systemic lupus erythematosus [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1178-1181.
[14] Xue-jun LIANG,Li-ying GONG,Fei ZHOU,De-min ZHOU,Jing-jing ZHU. Pharmacological effects of site specific conjugated anti-human epidermal growth factor receptor 2-antibody drug conjugate using unnatural amino acid technology [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 797-804.
[15] Xin-yun YAO,Xiao-min GAO,Xiao-ying ZOU,Lin YUE. Role of endocytosis in cell surface CXC chemokine receptor 4 expression of stem cells from apical papilla [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 893-899.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Author. English Title Test[J]. Journal of Peking University(Health Sciences), 2010, 42(1): 1 -10 .
[2] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 188 -191 .
[3] . [J]. Journal of Peking University(Health Sciences), 2009, 41(3): 376 -379 .
[4] . [J]. Journal of Peking University(Health Sciences), 2009, 41(4): 459 -462 .
[5] . [J]. Journal of Peking University(Health Sciences), 2010, 42(1): 82 -84 .
[6] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 319 -322 .
[7] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 333 -336 .
[8] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 337 -340 .
[9] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 225 -328 .
[10] . [J]. Journal of Peking University(Health Sciences), 2007, 39(4): 346 -350 .