Journal of Peking University(Health Sciences) ›› 2016, Vol. 48 ›› Issue (6): 1090-1094. doi: 10.3969/j.issn.1671-167X.2016.06.030

• Article • Previous Articles     Next Articles

Dental implantation and soft tissue augmentation after ridge preservation in a molar site: a case report

ZHAO Li-ping1, ZHAN Ya-lin1, HU Wen-jie1△, WANG Hao-jie1, WEI Yi-ping1, ZHEN Min1, Xu Tao1, LIU Yun-song2   

  1. (1. Department of Periodontology, 2. Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China)
  • Online:2016-12-18 Published:2016-12-18
  • Contact: HU Wen-jie E-mail:huwenjie@pkuss.bjmu.edu.cn
  • Supported by:

    Supported by the Capital Foundation for Medical Research and Development (2011-4025-04) and the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (2012-45)

Abstract:

For ideal implant rehabilitation, an adequate bone volume, optical implant position, and stable and healthy soft tissue are required. The reduction of alveolar bone and changes in its morphology subsequent to tooth extraction will result in insufficient amount of bone and adversely affect the ability to optimally place dental implants in edentulous sites. Preservation of alveolar bone volume through ridge preservation has been demonstrated to reduce the vertical and horizontal contraction of the alveolar bone crest after tooth extraction and reduce the need for additional bone augmentation procedures during implant placement. In this case, a patient presented with a mandible molar of severe periodontal disease, the tooth was removed as atraumatically as possible and the graft material of Bio-Oss was loosely placed in the alveolar socket without condensation and covered with Bio-Gide to reconstruct the defects of the alveolar ridge. Six months later, there were sufficient height and width of the alveolar ridge for the dental implant, avoiding the need of additional bone augmentation and reducing the complexity and unpredictability of the implant surgery. Soft tissue defects, such as gingival and connective tissue, played crucial roles in long-term implant success. Peri-implant plastic surgery facilitated development of healthy peri-implant structure able to withstand occlusal forces and muco-gingival stress. Six months after the implant surgery, the keratinized gingiva was absent in the buccal of the implant and the vestibular groove was a little shallow. The free gingival graft technique was used to solve the vestibulum oris groove supersulcus and the absence of keratinized gingiva around the implant. The deepening of vestibular groove and broadening of keratinized gingiva were conducive to the long-term health and stability of the tissue surrounding the implant. Implant installation and prosthetic restoration showed favorable outcome after six months.

Key words: Surgical procedures, minimally invasive, Tooth extraction, Dental implantation, Dental prosthesis, Soft tissue

CLC Number: 

  • R782.1
[1] CHEN Zhen,GU Bao-xin,TANG Yu-fang,YAN Zi-yu,NI Fang-duan,CUI Nian-hui. Constructions of the scale of difficulty in the extraction of impacted mandibular third molars by using Delphi method [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 100-104.
[2] MA Ke-nan,CHEN Hu,SHEN Yan-ru,ZHOU Yong-sheng,WANG Yong,SUN Yu-chun. Finite element analyses of retention of removable partial denture circumferential clasps manufactured by selective laser melting [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 105-112.
[3] WANG Juan,YU Hua-jie,SUN Jing-de,QIU Li-xin. Application evaluation of prefabricated rigid connecting bar in implants immediate impression preparation of edentulous jaw [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 187-192.
[4] SUN Yu-chun,GUO Yu-qing,CHEN Hu,DENG Ke-hui,LI Wei-wei. Independent innovation research, development and transformation of precise bionic repair technology for oral prosthesis [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 7-12.
[5] Feng LIANG,Min-jie WU,Li-dong ZOU. Clinical observation of the curative effect after 5-year follow-up of single tooth implant-supported restorations in the posterior region [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 970-976.
[6] WANG Si-wen,YOU Peng-yue,LIU Yu-hua,WANG Xin-zhi,TANG Lin,WANG Mei. Efficacy of two barrier membranes and deproteinized bovine bone mineral on bone regeneration in extraction sockets: A microcomputed tomographic study in dogs [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 364-370.
[7] LIU Xiao-qiang,YANG Yang,ZHOU Jian-feng,LIU Jian-zhang,TAN Jian-guo. Blood pressure and heart rate changes of 640 single dental implant surgeries [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 390-395.
[8] Ke-yi HAO,Jia LUO,Ping DI,Hou-zuo GUO,Hui-dan SHEN,Yan-ping LIU,Yu ZHANG,Ye LIN. Validation of the digital integration technology for evaluating the nasolabial morphology variation after the cross-arch fixed restoration of maxillary implant-supported prostheses [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 924-930.
[9] Zhong ZHANG,Huan-xin MENG,Jie HAN,Li ZHANG,Dong SHI. Effect of vertical soft tissue thickness on clinical manifestation of peri-implant tissue in patients with periodontitis [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 332-338.
[10] Wei-ting LI,Peng LI,Mu-zi PIAO,Fang ZHANG,Jie DI. Study on bone volume harvested from the implant sites with different methods [J]. Journal of Peking University(Health Sciences), 2020, 52(1): 103-106.
[11] Lin-lin LI,Yi-jiao ZHAO,Hu CHEN,Yong WANG,Yu-chun SUN. Accuracy of intercuspal occlusion in 3D reconstruction with the dental articulator position method [J]. Journal of Peking University(Health Sciences), 2020, 52(1): 138-143.
[12] Qiang LUO,Qian DING,Lei ZHANG,Qiu-fei XIE. Quantitative analysis of occlusal changes in posterior partial fixed implant supported prostheses [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1119-1123.
[13] Tian-wen ZHANG,Xiao-xia WANG,Zi-li LI,Biao YI,Cheng LIANG,Xing WANG. Establishment of three-dimensional measurement methods of nasolabial soft tissue for patients with maxillary protrusion [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 944-948.
[14] CHAI Jin-you, LIU Jian-zhang, WANG Bing, QU Jian, SUN Zhen, GAO Wen-hui, GUO Tian-hao, FENG Hai-lan, PAN Shao-xia. Evaluation of the fabrication deviation of a kind of milling digital implant surgical guides#br# [J]. Journal of Peking University(Health Sciences), 2018, 50(5): 892-898.
[15] WU Min-jie, ZOU Li-dong, LIANG Feng. Clinical observation on soft and hard tissue changes of immediate implantation and immediate reconstruction in anterior region after loading 3 years [J]. Journal of Peking University(Health Sciences), 2018, 50(4): 694-699.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Journal of Peking University(Health Sciences), 2009, 41(4): 456 -458 .
[2] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 125 -128 .
[3] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 135 -140 .
[4] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 158 -161 .
[5] . [J]. Journal of Peking University(Health Sciences), 2009, 41(1): 52 -55 .
[6] . [J]. Journal of Peking University(Health Sciences), 2009, 41(3): 297 -301 .
[7] . [J]. Journal of Peking University(Health Sciences), 2009, 41(5): 516 -520 .
[8] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 304 -309 .
[9] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 315 -318 .
[10] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 323 -328 .