Journal of Peking University(Health Sciences) ›› 2018, Vol. 50 ›› Issue (1): 117-122. doi: 10.3969/j.issn.1671-167X.2018.01.020

• Article • Previous Articles     Next Articles

Influence of implants prepared by selective laser melting on early bone healing

LIU Jingyin1*, CHEN Fei2*#, GE Yanjun2△, WEI Ling2, PAN Shaoxia2, FENG Hailan2   

  1. (1. Department of Prosthodontics, First Clinical Division, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100034, China; 2. Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China)
  • Online:2018-02-18 Published:2018-02-18
  • Contact: GE Yan-jun E-mail:yanjun_ge@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China (81400484) and the Youth Foundation of Peking University School and Hospital of Stomatology (Ys 020213)

Abstract: Objective: To evaluate the influence of the rough surface of dental implants prepared by selective laser melting (SLM) on early bone healing around titanium implants. Methods: A total of sixteen titanium implants were involved in our research, of which eight implants were prepared by SLM (TIXOS-Cylindrical, Leader-Novaxa, Milan, Italy; 3.3 mm×10 mm, internal hex) and the other eight were sandblasted, large-grit and acid-etched (SLA) implants (IMPLUS-Cylindrical, Leader-Novaxa, Milan, Italy; 3.3 mm×10 mm, internal hex). All of the dental implants were inserted into the healed extraction sockets of the mandible of two adult male Beagle dogs. Half of the dental implants were designed to be healed beneath the mucosa and the other half were intended to be healed transgingivally and were immediately loaded by acrylic resin bridge restoration. Three types of tetracycline fluorescent labels, namely calcein blue, alizarin complexone and calcein, were administered into the veins of the Beagle dogs 2, 4, and 8 weeks after implant placement respectively for fluorescent evaluation of newly formed bone peri-implant. Both Beagle dogs were euthanized 12 weeks after implant insertion and the mandible block specimens containing the titanium implants and surrounding bone and soft tissue of each dog were carefully sectioned and dissected. A total of 16 hard tissue slices were obtained and stained with toluidine blue for microscopic examination and histomorphometric measurements. Histological observation was made for each slice under light microscope and laser scanning confocal microscope (LSCM). Comparison on new bone formation around titanium implants of each group was made and mineral apposition rate (MAR) was calculated for each group. Results: Dental implants prepared by selective laser melting had achieved satisfying osseointegration to surrounding bone tissue after the healing period of 12 weeks. Newly formed bone tissue was observed creeping on the highly porous surface of the SLM implant and growing into the pores of surface structure. Higher MAR values were shown for SLM implants compared with SLA implants (P<0.01). Conclusion: Dental implants prepared by selective laser melting could promote early bone healing and improve mineral apposition rate.

Key words: Dental implants, Selective laser melting (SLM), Osteogenesis, Mineral apposition rate (MAR), Fluorescent dyes

CLC Number: 

  • R783.1
[1] LI Yi,YU Hua-jie,QIU Li-xin. Clinical classification and treatment decision of implant fracture [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 126-133.
[2] Wen-yu DU,Jing-wen YANG,Ting JIANG. Early constant observation of the effect of deferoxamine mesylate on improvement of vascularized bone regeneration in SD rat skull critical size defect model [J]. Journal of Peking University (Health Sciences), 2021, 53(6): 1171-1177.
[3] WANG Jing-qi,WANG Xiao. In vivo study of strontium-doped calcium phosphate cement for biological properties [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 378-383.
[4] LI Peng,PIAO Mu-zi,HU Hong-cheng,WANG Yong,ZHAO Yi-jiao,SHEN Xiao-jing. Radiography study on osteotome sinus floor elevation with placed implant simultaneously with no graft augmentation [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 95-101.
[5] ZHANG Sheng-nan,AN Na,OUYANG Xiang-ying,LIU Ying-jun,WANG Xue-kui. Role of growth arrest-specific protein 6 in migration and osteogenic differentiation of human periodontal ligament cells [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 9-15.
[6] Mei WANG, Bo-wen LI, Si-wen WANG, Yu-hua LIU. Preparation and osteogenic effect study of small intestinal submucosa sponge [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 952-958.
[7] Zhong ZHANG,Huan-xin MENG,Jie HAN,Li ZHANG,Dong SHI. Effect of vertical soft tissue thickness on clinical manifestation of peri-implant tissue in patients with periodontitis [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 332-338.
[8] Chun-ping LIN,Song-he LU,Jun-xin ZHU,Hong-cheng HU,Zhao-guo YUE,Zhi-hui TANG. Influence of thread shapes of custom-made root-analogue implants on stress distribution of peri-implant bone: A three-dimensional finite element analysis [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1130-1137.
[9] Ying CHEN,Zhong-ning LIU,Bo LI,Ting JIANG. Preparation of aspirin sustained-release microsphere and its in vitro releasing [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 907-912.
[10] Qian WANG,Dan LI,Zhi-hui TANG. Sinus floor elevation and simultaneous dental implantation: A long term retrospective study of sinus bone gain [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 925-930.
[11] Xiao-qian LIU,Qiu-wen CHEN,Hai-lan FENG,Bing WANG,Jian QU,Zhen SUN,Mo-di HENG,Shao-xia PAN. Oral hygiene maintenance of locator attachments implant overdentures in edentulous population: A longitudinal study [J]. Journal of Peking University(Health Sciences), 2019, 51(1): 136-144.
[12] Zhi-yong△ ZHANG,Tian MENG,Quan CHEN,Wen-shu LIU,Yu-huan CHEN. Retrospective analysis of early dental implant failure [J]. Journal of Peking University(Health Sciences), 2018, 50(6): 1088-1091.
[13] SUI Hua-xin, LV Pei-jun, WANG Yong, FENG Yu-chi. Effects of low level laser irradiation on the osteogenic capacity of sodium alginate/gelatin/human adipose-derived stem cells 3D bio-printing construct [J]. Journal of Peking University(Health Sciences), 2018, 50(5): 868-875.
[14] LIANG Nai-wen, SHI Lei,HUANG Ying,DENG Xu-liang. Role of different scale structures of titanium implant in the biological behaviors of human umbilical vein endothelial cells [J]. Journal of Peking University(Health Sciences), 2017, 49(1): 43-048.
[15] CHEN Fei, PAN Shao-xia, FENG Hai-lan. Distribution and content of transforming growth factor-β1 and vascular endothelial growth factor in each layer of concentrated growth factors [J]. Journal of Peking University(Health Sciences), 2016, 48(5): 860-865.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Author. English Title Test[J]. Journal of Peking University(Health Sciences), 2010, 42(1): 1 -10 .
[2] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 188 -191 .
[3] . [J]. Journal of Peking University(Health Sciences), 2009, 41(3): 376 -379 .
[4] . [J]. Journal of Peking University(Health Sciences), 2009, 41(4): 459 -462 .
[5] . [J]. Journal of Peking University(Health Sciences), 2010, 42(1): 82 -84 .
[6] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 319 -322 .
[7] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 333 -336 .
[8] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 337 -340 .
[9] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 225 -328 .
[10] . [J]. Journal of Peking University(Health Sciences), 2007, 39(4): 346 -350 .