Effect of a novel radio-frequency atmospheric-pressure glow discharge plasma jet treatment on crosslinking of dentin collagen

  • Xin-rong MA ,
  • Xiao-ming ZHU ,
  • Jing LI ,
  • De-li LI ,
  • He-ping LI ,
  • Jian-guo TAN
Expand
  • 1. Department of Prothodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
    2. Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100101, China
    3. Department of Engineering Physics, Tsinghua University, Beijing 100084, China

Received date: 2021-10-11

  Online published: 2022-02-21

Abstract

Objective: To investigate the effect of a noval radio-frequency atmospheric-pressure glow discharge (RF-APGD) plasma jet on crosslinking of dentin collagen. Methods: (1) Twenty intact third molars were collected. The middle dentin discs were prepared for each tooth by low-speed water-cooled Isomet saw, and then immersed in 10% (mass fraction) H3PO4 solution for 16 h to obtain fully demine-ralized dentin collagen. The twenty dentin discs were then randomly divided into five groups. The control group was untreated while the four experimental groups were treated by plasma jet with gas temperature of 4 ℃ for different times (20 s, 30 s, 40 s, and 50 s). The structure and crosslinking degree of dentin collagen were characterized by attenuated total reflection-Fourier transform infrared spectroscopy. The surface morphology of demineralized dentin was observed by scanning electron microscope, and the microstructure was observed by transmission electron microscope. (2) Fourty non-caries third molars were collected to prepare 5 g fine dentin powder, then completely demineralized with 10% H3PO4 solution. The control group was untreated, while the four experimental groups were treated by plasma jet for 20 s, 30 s, 40 s and 50 s. The crosslinking degree of each group was determined by ninhydrin colorimetric method. (3) Forty intact third molars were collected to obtain dentin strips. Only two central symmetrical dentin strips (nasty 80) were taken from each tooth and immersed in 10% H3PO4 solution for 16 h to obtain fully demineralized dentin collagen. Eighty dentine collagen fiber strips were randomly divided into five groups. The control group was untreated and the axial surfaces of dentin collagen fiber strips in the expe-rimental groups were treated with the plasma jet for 20 s, 30 s, 40 s and 50 s. The ultimate tensile strength of dentin was measured by universal mechanical machine. Results: (1) The surface morphology of demineralized dentin observed by scanning electron microscope showed that the network structure of collagen fibers on the surface of demineralized dentin treated with the plasma jet for 20 s, 30 s and 40 s could maintain the uncollapsed three-dimensional structure, and part of the microstructure was destroyed after plasma jet treated for 50 s. After being treated by plasma jet for 20 s, 30 s and 40 s, the three-dimensional structure was uncollapsed, and the typical periodic transverse pattern of natural type Ⅰ collagen fiber could be seen. The results of infrared spectra showed that the secondary conformation of dentin collagen fibers was the same as that of the control group after being treated with the plasma jet, and the intensity of amide band was significantly increased after being treated for 30 s and 40 s. (2) The results of ninhydrin crosslinking test showed that the crosslinking ratio of dentin collagen treated by plasma jet for 30 s and 40 s was the highest, and the difference was statistically significant (P<0.05). (3) The results of dentin ultimate tensile strength showed that the control group was (1.67±0.24) MPa, and the plasma jet treated 20 s, 30 s, 40 s and 50 s groups were (4.21±0.15) MPa, (7.06±0.30) MPa, (7.32±0.27) MPa, and (6.87±0.17) MPa, which were significantly different from that of the control group (P<0.05). Conclusion: The novel RF-APGD plasma jet treatment can promote the crosslinking degree of demineralized dentin collagen and improve their ultimate tensile strength.

Cite this article

Xin-rong MA , Xiao-ming ZHU , Jing LI , De-li LI , He-ping LI , Jian-guo TAN . Effect of a novel radio-frequency atmospheric-pressure glow discharge plasma jet treatment on crosslinking of dentin collagen[J]. Journal of Peking University(Health Sciences), 2022 , 54(1) : 83 -88 . DOI: 10.19723/j.issn.1671-167X.2022.01.013

References

[1] 刘明月, 谭建国. 一步一步做好牙体缺损修复体类型的选择[J]. 中华口腔医学杂志, 2021, 56(7):720-725.
[2] De MJ, Van LK, Peumans M, et al. A critical review of the durability of adhesion to tooth tissue: Methods and results[J]. J Dent Res, 2005, 84(2):118-132.
[3] Nakabayashi N, Kojima K, Masuhara E. The promotion of adhesion by the infiltration of monomers into tooth substrates[J]. J Biomed Mater Res, 1982, 16(3):265-273.
[4] Yao S, Xu Y, Shao C, et al. Collagen: Methods and protocols[M]. New York: Springer New York, 2019: 39-54.
[5] Ma YX, Hoff SE, Huang XQ, et al. Involvement of prenucleation clusters in calcium phosphate mineralization of collagen[J]. Acta Biomater, 2021, 120(7):213-223.
[6] Wang Y, Spencer P. Hybridization efficiency of the adhesive/dentin interface with wet bonding[J]. J Dent Res, 2003, 82(2):141-145.
[7] Tjäderhane L, Nascimento FD, Breschi L, et al. Optimizing dentin bond durability: Control of collagen degradation by matrix metalloproteinases and cysteine cathepsins[J]. Dent Mater, 2013, 29(1):116-135.
[8] Stammers M, Niewczas IS, Segonds-Pichon A, et al. Mechanical stretching changes crosslinking and glycation levels in the collagen of mouse tail tendon[J]. J Biol Chem, 2020, 295(31):10572-10580.
[9] Zhou J, Chiba A, Scheffel DL, et al. Cross-linked dry bonding: A new etch-and-rinse technique[J]. Dent Mater, 2016, 32(9):1124-1132.
[10] Shinkai K, Takada M, Kawashima S, et al. Effects of the percen-tage of air/water in spray on the efficiency of tooth ablation with erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation[J]. Lasers Med Sci, 2019, 34(1):99-105.
[11] Zhu XM, Guo H, Zhou JF, et al. Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces[J]. Plasma Sci and Tech, 2018, 20(4):044010.
[12] Zhu XM, Zhou JF, Guo H, et al. Effects of a modified cold atmospheric plasma jet treatment on resin-dentin bonding[J]. Dent Mater J, 2018, 37(5):798-804.
[13] Li HP, Wang ZB, Ge N, et al. Studies on the physical characte-ristics of the radio-frequency atmospheric-pressure glow discharge plasmas for the genome mutation of methylosinus trichosporium[J]. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc, 2012, 40(11):2853-2860.
[14] Nanci A. Ten Cate’s oral histology[M]. 9th ed. St. Louis: Mosby, 2016: 157-192.
[15] Ferracane JL. Resin composite: State of the art[J]. Dent Mater, 2011, 27(1):29-38.
[16] Moradian-Oldak J, George A. Biomineralization of enamel and dentin mediated by matrix proteins[J]. J Dent Res, 2021, 100(10):1020-1029.
[17] Wang Y, Azaïs T, Robin M, et al. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite[J]. Nat Mater, 2012, 11(8):724-733.
[18] Hartwig S, Doll C, Voss JO, et al. Treatment of wound healing disorders of radial forearm free flap donor sites using cold atmospheric plasma: A proof of concept[J]. J Oral Maxillofac Surg, 2017, 75(2):429-435.
[19] Liguori A, Bigi A, Colombo V, et al. Atmospheric pressure non-equilibrium plasma as a green tool to crosslink gelatin nanofibers[J]. Sci Rep, 2016, 6:38542.
[20] Chiang YS, Chen YL, Chuang SF, et al. Riboflavin-ultraviolet-A-induced collagen cross-linking treatments in improving dentin bonding[J]. Dent Mater, 2013, 29(6):682-692.
[21] Craciun G, Manaila E, Stelescu MD. New elastomeric materials based on natural rubber obtained by electron beam irradiation for food and pharmaceutical use[J]. Materials, 2016, 9(12):999.
[22] He L, Mu C, Shi J, et al. Modification of collagen with a natural cross-linker, procyanidin[J]. Int J Biol Macromol, 2011, 48(2):354-359.
[23] Wu L, Shao H, Fang Z, et al. Mechanism and effects of polyphenol derivatives for modifying collagen[J]. ACS Biomaterials Science & Engineering, 2019, 5(9):4272-4284.
Outlines

/