Journal of Peking University (Health Sciences) ›› 2024, Vol. 56 ›› Issue (4): 557-561. doi: 10.19723/j.issn.1671-167X.2024.04.001
CLC Number:
1 |
Hu J , Sun F , Chen W , et al. BTF3 sustains cancer stem-like phenotype of prostate cancer via stabilization of BMI1[J]. J Exp Clin Cancer Res, 2019, 38 (1): 227.
doi: 10.1186/s13046-019-1222-z |
2 |
Harris WP , Mostaghel EA , Nelson PS , et al. Androgen deprivation therapy: Progress in understanding mechanisms of resistance and optimizing androgen depletion[J]. Nat Clin Pract Urol, 2009, 6 (2): 76- 85.
doi: 10.1038/ncpuro1296 |
3 |
Helpap B , Kollermann J , Oehler U . Neuroendocrine differentiation in prostatic carcinomas: Histogenesis, biology, clinical relevance, and future therapeutical perspectives[J]. Urol Int, 1999, 62 (3): 133- 138.
doi: 10.1159/000030376 |
4 |
Vlachostergios PJ , Puca L , Beltran H . Emerging variants of castration-resistant prostate cancer[J]. Curr Oncol Rep, 2017, 19 (5): 32.
doi: 10.1007/s11912-017-0593-6 |
5 |
Aggarwal R , Huang J , Alumkal JJ , et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: A multi-institutional prospective study[J]. J Clin Oncol, 2018, 36 (24): 2492- 2503.
doi: 10.1200/JCO.2017.77.6880 |
6 |
陈铌, 周桥. 第5版WHO前列腺肿瘤分类解读[J]. 中华病理学杂志, 2023, 52 (4): 321- 328.
doi: 10.3760/cma.j.cn112151-20221208-01030 |
7 |
Lee JK , Phillips JW , Smith BA , et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells[J]. Cancer Cell, 2016, 29 (4): 536- 547.
doi: 10.1016/j.ccell.2016.03.001 |
8 |
Han M , Li F , Zhang Y , et al. FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer[J]. Cancer Cell, 2022, 40 (11): 1306- 1323.e8.
doi: 10.1016/j.ccell.2022.10.011 |
9 |
Wang Z , Wang T , Hong D , et al. Single-cell transcriptional regulation and genetic evolution of neuroendocrine prostate cancer[J]. iScience, 2022, 25 (7): 104576.
doi: 10.1016/j.isci.2022.104576 |
10 |
Hu J , Han B , Huang J . Morphologic spectrum of neuroendocrine tumors of the prostate: An updated review[J]. Arch Pathol Lab Med, 2020, 144 (3): 320- 325.
doi: 10.5858/arpa.2019-0434-RA |
11 |
Ali A , Du Feu A , Oliveira P , et al. Prostate zones and cancer: Lost in transition?[J]. Nat Rev Urol, 2022, 19 (2): 101- 115.
doi: 10.1038/s41585-021-00524-7 |
12 | Soares VA , Trezza E . Electrocardiographic changes observed during the use of trimethaphan in the treatment of malignant arterial hypertension[J]. Arq Bras Cardiol, 1978, 31 (4): 273- 276. |
13 |
Ousset M , van Keymeulen A , Bouvencourt G , et al. Multipotent and unipotent progenitors contribute to prostate postnatal development[J]. Nat Cell Biol, 2012, 14 (11): 1131- 1138.
doi: 10.1038/ncb2600 |
14 |
Choi N , Zhang B , Zhang L , et al. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation[J]. Cancer Cell, 2012, 21 (2): 253- 265.
doi: 10.1016/j.ccr.2012.01.005 |
15 |
Stoyanova T , Cooper AR , Drake JM , et al. Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells[J]. Proc Natl Acad Sci USA, 2013, 110 (50): 20111- 20116.
doi: 10.1073/pnas.1320565110 |
16 |
Park JW , Lee JK , Sheu KM , et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage[J]. Science, 2018, 362 (6410): 91- 95.
doi: 10.1126/science.aat5749 |
17 |
Ku SY , Rosario S , Wang Y , et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance[J]. Science, 2017, 355 (6320): 78- 83.
doi: 10.1126/science.aah4199 |
18 |
Deng S , Wang C , Wang Y , et al. Ectopic JAK-STAT activation enables the transition to a stem-like and multilineage state conferring AR-targeted therapy resistance[J]. Nat Cancer, 2022, 3 (9): 1071- 1087.
doi: 10.1038/s43018-022-00431-9 |
19 |
Giafaglione JM , Crowell PD , Delcourt AML , et al. Prostate lineage-specific metabolism governs luminal differentiation and response to antiandrogen treatment[J]. Nat Cell Biol, 2023, 25 (12): 1821- 1832.
doi: 10.1038/s41556-023-01274-x |
20 |
Bakht MK , Beltran H . Metabolically regulated lineages in prostate cancer[J]. Nat Cell Biol, 2023, 25 (12): 1726- 1728.
doi: 10.1038/s41556-023-01298-3 |
21 |
Butler W , Xu L , Zhou Y , et al. Oncofetal protein glypican-3 is a biomarker and critical regulator of function for neuroendocrine cells in prostate cancer[J]. J Pathol, 2023, 260 (1): 43- 55.
doi: 10.1002/path.6063 |
22 |
Kaushik AK , Shojaie A , Panzitt K , et al. Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate cancer[J]. Nat Commun, 2016, 7, 11612.
doi: 10.1038/ncomms11612 |
23 |
Graham LS , Haffner MC , Sayar E , et al. Clinical, pathologic, and molecular features of amphicrine prostate cancer[J]. Prostate, 2023, 83 (7): 641- 648.
doi: 10.1002/pros.24497 |
24 |
Labrecque MP , Coleman IM , Brown LG , et al. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer[J]. J Clin Invest, 2019, 129 (10): 4492- 4505.
doi: 10.1172/JCI128212 |
25 |
Labrecque MP , Brown LG , Coleman IM , et al. RNA splicing factors SRRM3 and SRRM4 distinguish molecular phenotypes of castration-resistant neuroendocrine prostate cancer[J]. Cancer Res, 2021, 81 (18): 4736- 4750.
doi: 10.1158/0008-5472.CAN-21-0307 |
26 |
Wilkinson S , Ye H , Karzai F , et al. Nascent prostate cancer heterogeneity drives evolution and resistance to intense hormonal therapy[J]. Eur Urol, 2021, 80 (6): 746- 757.
doi: 10.1016/j.eururo.2021.03.009 |
27 |
Cheng Q , Butler W , Zhou Y , et al. Pre-existing castration-resistant prostate cancer-like cells in primary prostate cancer promote resistance to hormonal therapy[J]. Eur Urol, 2022, 81 (5): 446- 455.
doi: 10.1016/j.eururo.2021.12.039 |
28 |
Marklund M , Schultz N , Friedrich S , et al. Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones[J]. Nat Commun, 2022, 13 (1): 5475.
doi: 10.1038/s41467-022-33069-3 |
29 |
Dong B , Miao J , Wang Y , et al. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer[J]. Commun Biol, 2020, 3 (1): 778.
doi: 10.1038/s42003-020-01476-1 |
30 |
Deeble PD , Murphy DJ , Parsons SJ , et al. Interleukin-6- and cyclic AMP-mediated signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells[J]. Mol Cell Biol, 2001, 21 (24): 8471- 8482.
doi: 10.1128/MCB.21.24.8471-8482.2001 |
31 |
Wang C , Peng G , Huang H , et al. Blocking the feedback loop between neuroendocrine differentiation and macrophages improves the therapeutic effects of enzalutamide (MDV3100) on prostate cancer[J]. Clin Cancer Res, 2018, 24 (3): 708- 723.
doi: 10.1158/1078-0432.CCR-17-2446 |
32 |
Natani S , Sruthi KK , Asha SM , et al. Activation of TGF-beta: SMAD2 signaling by IL-6 drives neuroendocrine differentiation of prostate cancer through p38MAPK[J]. Cell Signal, 2022, 91, 110240.
doi: 10.1016/j.cellsig.2021.110240 |
33 |
Huang J , Yao JL , Zhang L , et al. Differential expression of interleukin-8 and its receptors in the neuroendocrine and non-neuroendocrine compartments of prostate cancer[J]. Am J Pathol, 2005, 166 (6): 1807- 1815.
doi: 10.1016/S0002-9440(10)62490-X |
34 |
Li Y , He Y , Butler W , et al. Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer[J]. Sci Transl Med, 2019, 11 (521): eaax0428.
doi: 10.1126/scitranslmed.aax0428 |
35 |
Lim J S , Ibaseta A , Fischer MM , et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer[J]. Nature, 2017, 545 (7654): 360- 364.
doi: 10.1038/nature22323 |
36 |
Beltran H , Oromendia C , Danila DC , et al. A phase Ⅱ trial of the aurora kinase a inhibitor alisertib for patients with castration-resistant and neuroendocrine prostate cancer: Efficacy and biomarkers[J]. Clin Cancer Res, 2019, 25 (1): 43- 51.
doi: 10.1158/1078-0432.CCR-18-1912 |
37 |
Michaelson MD , Oudard S , Ou YC , et al. Randomized, placebo-controlled, phase Ⅲ trial of sunitinib plus prednisone versus prednisone alone in progressive, metastatic, castration-resistant prostate cancer[J]. J Clin Oncol, 2014, 32 (2): 76- 82.
doi: 10.1200/JCO.2012.48.5268 |
38 |
Shimizu Y , Suzuki T , Yoshikawa T , et al. Next-generation cancer immunotherapy targeting glypican-3[J]. Front Oncol, 2019, 9, 248.
doi: 10.3389/fonc.2019.00248 |
39 |
Paz-Ares L , Champiat S , Lai WV , et al. Tarlatamab, a first-in-class DLL3-targeted bispecific T-cell engager, in recurrent small-cell lung cancer: An open-label, phase Ⅰ study[J]. J Clin Oncol, 2023, 41 (16): 2893- 2903.
doi: 10.1200/JCO.22.02823 |
40 |
Yang W , Wang W , Li Z , et al. Delta-like ligand 3 in small cell lung cancer: Potential mechanism and treatment progress[J]. Crit Rev Oncol Hematol, 2023, 191, 104136.
doi: 10.1016/j.critrevonc.2023.104136 |
41 |
Giffin MJ , Cooke K , Lobenhofer EK , et al. AMG 757, a half-life extended, DLL3-targeted bispecific T-cell engager, shows high potency and sensitivity in preclinical models of small-cell lung cancer[J]. Clin Cancer Res, 2021, 27 (5): 1526- 1537.
doi: 10.1158/1078-0432.CCR-20-2845 |
42 |
Chou J , Egusa EA , Wang S , et al. Immunotherapeutic targeting and PET imaging of DLL3 in small-cell neuroendocrine prostate cancer[J]. Cancer Res, 2023, 83 (2): 301- 315.
doi: 10.1158/0008-5472.CAN-22-1433 |
43 |
Gay CM , Stewart CA , Park EM , et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities[J]. Cancer Cell, 2021, 39 (3): 346- 360.e7.
doi: 10.1016/j.ccell.2020.12.014 |
[1] | Zhicun LI, Tianyu WU, Lei LIANG, Yu FAN, Yisen MENG, Qian ZHANG. Risk factors analysis and nomogram model construction of postoperative pathological upgrade of prostate cancer patients with single core positive biopsy [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 896-901. |
[2] | 念增 邢,明帅 王,飞亚 杨,路 尹,苏军 韩. [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 565-566. |
[3] | Yuxuan TIAN,Mingjian RUAN,Yi LIU,Derun LI,Jingyun WU,Qi SHEN,Yu FAN,Jie JIN. Predictive effect of the dual-parametric MRI modified maximum diameter of the lesions with PI-RADS 4 and 5 on the clinically significant prostate cancer [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 567-574. |
[4] | Kaifeng YAO,Mingjian RUAN,Derun LI,Yuxuan TIAN,Yuke CHEN,Yu FAN,Yi LIU. Diagnostic efficacy of targeted biopsy combined with regional systematic biopsy in prostate cancer in patients with PI-RADS 4-5 [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 575-581. |
[5] | Ye YAN,Xiaolong LI,Haizhui XIA,Xuehua ZHU,Yuting ZHANG,Fan ZHANG,Ke LIU,Cheng LIU,Lulin MA. Analysis of risk factors for long-term overactive bladder after radical prostatectomy [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 589-593. |
[6] | Shuhui YU,Jianing HAN,Lijun ZHONG,Congyu CHEN,Yunxiang XIAO,Yanbo HUANG,Yang YANG,Xinyan CHE. Predictive value of preoperative pelvic floor electrophysiological parameters on early urinary incontinence following radical prostatectomy [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 594-599. |
[7] | 蔚 薛,樑 董,宏阳 钱,笑晨 费. [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 775-780. |
[8] | Yi LIU,Chang-wei YUAN,Jing-yun WU,Qi SHEN,Jiang-xi XIAO,Zheng ZHAO,Xiao-ying WANG,Xue-song LI,Zhi-song HE,Li-qun ZHOU. Diagnostic efficacy of prostate cancer using targeted biopsy with 6-core systematic biopsy for patients with PI-RADS 5 [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 812-817. |
[9] | Hai MAO,Fan ZHANG,Zhan-yi ZHANG,Ye YAN,Yi-chang HAO,Yi HUANG,Lu-lin MA,Hong-ling CHU,Shu-dong ZHANG. Predictive model of early urinary continence recovery based on prostate gland MRI parameters after laparoscopic radical prostatectomy [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 818-824. |
[10] | Chang-wei YUAN,De-run LI,Zhi-hua LI,Yi LIU,Gang-zhi SHAN,Xue-song LI,Li-qun ZHOU. Application of dynamic contrast enhanced status in multiparametric magnetic resonance imaging for prostatic cancer with PI-RADS 4 lesion [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 838-842. |
[11] | ZHANG Fan,CHEN Qu,HAO Yi-chang,YAN Ye,LIU Cheng,HUANG Yi,MA Lu-lin. Relationship between recovery of urinary continence after laparoscopic radical prostatectomy and preoperative/postoperative membranous urethral length [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 299-303. |
[12] | ZHANG Fan,HUANG Xiao-juan,YANG Bin,YAN Ye,LIU Cheng,ZHANG Shu-dong,HUANG Yi,MA Lu-lin. Relationship between prostate apex depth and early recovery of urinary continence after laparoscopic radical prostatectomy [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 692-696. |
[13] | HAO Han,LIU Yue,CHEN Yu-ke,SI Long-mei,ZHANG Meng,FAN Yu,ZHANG Zhong-yuan,TANG Qi,ZHANG Lei,WU Shi-liang,SONG Yi,LIN Jian,ZHAO Zheng,SHEN Cheng,YU Wei,HAN Wen-ke. Evaluating continence recovery time after robot-assisted radical prostatectomy [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 697-703. |
[14] | Yi LIU,Zhi-jian LIU,Qi SHEN,Jing-yun WU,Yu FAN,De-run LI,Wei YU,Zhi-song HE. A clinical analysis of 14 cases of prostatic stromal tumor of uncertain malignant potential [J]. Journal of Peking University (Health Sciences), 2020, 52(4): 621-624. |
[15] | Yi-chang HAO,Ye YAN,Fan ZHANG,Min QIU,Lang ZHOU,Ke LIU,Jian LU,Chun-lei XIAO,Yi HUANG,Cheng LIU,Lu-lin MA. Surgical strategy selection and experience summary of prostate cancer with positive single needle biopsy [J]. Journal of Peking University (Health Sciences), 2020, 52(4): 625-631. |
|