CLC Number:
[1] |
Carballo CB, Nakagawa Y, Sekiya I, et al. Basic science of articular cartilage [J]. Clin Sports Med, 2017, 36(3):413-425.
doi: 10.1016/j.csm.2017.02.001 |
[2] |
Simon TM, Jackson DW. Articular cartilage: Injury pathways and treatment options [J]. Sports Med Arthrosc Rev, 2018, 26(1):31-39.
doi: 10.1097/JSA.0000000000000182 |
[3] |
Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage [J]. Nat Rev Rheumatol, 2015, 11(1):21-34.
doi: 10.1038/nrrheum.2014.157 |
[4] |
Oldershaw RA. Cell sources for the regeneration of articular cartilage: The past, the horizon and the future [J]. Int J Exp Pathol, 2012, 93(6):389-400.
doi: 10.1111/j.1365-2613.2012.00837.x pmid: 23075006 |
[5] |
Schindler OS. Current concepts of articular cartilage repair [J]. Acta Orthop Belg, 2011, 77(6):709-726.
pmid: 22308614 |
[6] |
Hirano Y, Ishiguro N, Sokabe M, et al. Effects of tensile and compressive strains on response of a chondrocytic cell line embedded in type Ⅰ collagen gel [J]. J Biotechnol, 2008, 133(2):245-252.
pmid: 17868945 |
[7] |
Liu Q, Hu X, Zhang X, et al. Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression [J]. Sci Rep, 2016, 6:37268.
doi: 10.1038/srep37268 |
[8] |
Liu Q, Zhang X, Hu X, et al. Emerging roles of circRNA related to the mechanical stress in human cartilage degradation of osteoarthritis [J]. Mol Ther Nucleic Acids, 2017, 7:223-230.
doi: 10.1016/j.omtn.2017.04.004 |
[9] |
Liu Q, Hu X, Zhang X, et al. The TMSB4 pseudogene lncRNA functions as a competing endogenous RNA to promote cartilage degradation in human osteoarthritis [J]. Mol Ther, 2016, 24(10):1726-1733.
doi: 10.1038/mt.2016.151 |
[10] |
Dai L, Zhang X, Hu X, et al. Silencing of miR-101 prevents cartilage degradation by regulating extracellular matrix-related genes in a rat model of osteoarthritis [J]. Mol Ther, 2015, 23(8):1331-1340.
doi: 10.1038/mt.2015.61 |
[11] |
Liu Q, Zhang X, Hu X, et al. Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a miR-136 “Sponge” in human cartilage degradation [J]. Sci Rep, 2016, 6:22572.
doi: 10.1038/srep22572 |
[12] |
Liu Q, Zhang X, Dai L, et al. Long noncoding RNA related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis [J]. Arthritis Rheumatol, 2014, 66(4):969-978.
doi: 10.1002/art.38309 |
[13] |
Shi Y, Hu X, Cheng J, et al. A small molecule promotes cartilage extracellular matrix generation and inhibits osteoarthritis development [J]. Nat Commun, 2019, 10(1):1914.
doi: 10.1038/s41467-019-09839-x |
[14] |
Cheng J, Hu X, Dai L, et al. Inhibition of transforming growth factor beta-activated kinase 1 prevents inflammation-related cartilage degradation in osteoarthritis [J]. Sci Rep, 2016, 6:34497.
doi: 10.1038/srep34497 pmid: 27682596 |
[15] |
Cheng J, Duan X, Fu X, et al. RIP1 perturbation induces chondrocyte necroptosis and promotes osteoarthritis pathogenesis via targeting BMP7 [J]. Front Cell Dev Biol, 2021, 9:638382.
doi: 10.3389/fcell.2021.638382 pmid: 33937236 |
[16] |
Pi Y, Zhang X, Shao Z, et al. Intra-articular delivery of anti-Hif-2alpha siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice [J]. Gene Ther, 2015, 22(6):439-448.
doi: 10.1038/gt.2015.16 pmid: 25876463 |
[17] |
Pi Y, Zhang X, Shi J, et al. Targeted delivery of non-viral vectors to cartilage in vivo using a chondrocyte-homing peptide identified by phage display [J]. Biomaterials, 2011, 32(26):6324-6332.
doi: 10.1016/j.biomaterials.2011.05.017 |
[18] |
Ogura T, Bryant T, Merkely G, et al. Survival analysis of revision autologous chondrocyte implantation for failed ACI [J]. Am J Sports Med, 2019, 47(13):3212-3220.
doi: 10.1177/0363546519876630 |
[19] | Shao Z, Zhang X, Pi Y, et al. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo [J]. Biomate-rials, 2012, 33(12):3375-3387. |
[20] |
Huang H, Zhang X, Hu X, et al. A functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration [J]. Biomaterials, 2014, 35(36):9608-9619.
doi: 10.1016/j.biomaterials.2014.08.020 |
[21] |
Xu X, Liang Y, Li X, et al. Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration [J]. Biomaterials, 2021, 269:120539.
doi: 10.1016/j.biomaterials.2020.120539 |
[22] |
Zhang W, Ling C, Zhang A, et al. An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration [J]. Bioact Mater, 2020, 5(4):832-843.
doi: 10.1016/j.bioactmat.2020.05.003 pmid: 32637747 |
[23] |
Hu X, Zhu J, Li X, et al. Dextran-coated fluorapatite crystals doped with Yb3+/Ho3+ for labeling and tracking chondrogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo [J]. Biomaterials, 2015, 52:441-451.
doi: 10.1016/j.biomaterials.2015.02.050 |
[24] |
Zhang X, Zheng Z, Liu P, et al. The synergistic effects of microfracture, perforated decalcified cortical bone matrix and adenovirus-bone morphogenetic protein-4 in cartilage defect repair [J]. Biomaterials, 2008, 29(35):4616-4629.
doi: 10.1016/j.biomaterials.2008.07.051 pmid: 18793797 |
[25] |
Dai L, He Z, Zhang X, et al. One-step repair for cartilage defects in a rabbit model: A technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture [J]. Am J Sports Med, 2014, 42(3):583-591.
doi: 10.1177/0363546513518415 |
[26] | Dai L, He Z, Jiang Y, et al. One-step strategy for cartilage repair using acellular bone matrix scaffold based in situ tissue engineering technique in a preclinical minipig model [J]. Am J Transl Res, 2019, 11(10):6650-6659. |
[27] |
Meng Q, Man Z, Dai L, et al. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration [J]. Sci Rep, 2015, 5:17802.
doi: 10.1038/srep17802 |
[28] |
Meng Q, Hu X, Huang H, et al. Microfracture combined with functional pig peritoneum-derived acellular matrix for cartilage repair in rabbit models [J]. Acta Biomater, 2017, 53:279-292.
doi: 10.1016/j.actbio.2017.01.055 |
[29] |
Zhao F, Cheng J, Sun M, et al. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bioink in extrusion-based 3D cell printing [J]. Biofabrication, 2020, 12(4):045011.
doi: 10.1088/1758-5090/aba411 |
[30] | Shi W, Sun M, Hu X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo [J]. Adv Mater, 2017, 29():1701089.1-7. |
[1] | PAN Li-ping, CAO Yong-ping, WEN Li-cheng, CHAI Wei-bing, DU Jun-bao, JIN Hong-fang, LIU Jia, YANG Xin, MENG Zhi-chao, LIU Heng, CUI Yun-peng, WANG Rui, WU Hao, ZHOU Xing-tong, LI Xiang. Hydrogen sulfide in cartilage and its inhibitory effect on matrix metalloproteinase 13 expression in chondrocytes induced by interlukin-1β [J]. Journal of Peking University(Health Sciences), 2016, 48(2): 194-201. |
|