Journal of Peking University(Health Sciences) ›› 2020, Vol. 52 ›› Issue (1): 144-151. doi: 10.19723/j.issn.1671-167X.2020.01.023

Previous Articles     Next Articles

Preliminary study on three digital analysis methods for analyzing the distribution and area of occlusal contacts

Ning XIAO,Yu-chun SUN,Yi-jiao ZHAO(),Yong WANG()   

  1. Center of Digital Dentistry, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2019-10-10 Online:2020-02-18 Published:2020-02-20
  • Contact: Yi-jiao ZHAO,Yong WANG E-mail:kqcadcs@bjmu.edu.cn;kqcadc@bjmu.edu.cn
  • Supported by:
    Supported by the General Program of National Natural Science Foundation of China(81870815);the National Key R&D Program of China(2018YFB1106903);the Key R&D Program of Ningxia Hui Autonomous Region(2018BEG02012)

RICH HTML

  

Abstract:

Objective: To analyze the distribution and area of occlusal contacts of clinical dental model using three kinds of digital analysis methods, to compare the results of these methods and traditional occlusal analysis method, and to further analyze the characteristics of each digital analysis method. Methods: A set of plaster models of normal subjects was selected. The models were scanned by lab scanner 3shape E4 and the files were exported in a stereolithography file format. In 3D analysis software Geomagic Studio 2013 and Geomagic Qualify 2013, the corresponding results of 3D occlusal contact distribution and occlusal contact area were obtained through three digital analysis methods: “3D color difference map method”, “point cloud analysis method”, and “virtual articulating paper method”. The occlusal contact distribution and occlusal contact area were also obtained by two traditional occlusal analysis methods: “silicone interocclusal recording material method” and “scanned articulating paper mark method”. A threshold of 100 μm was used to analyze the occlusal contacts and 100 μm was also the thickness of arti-culating paper used in this study. The results of these five different occlusal analysis methods were evaluated qualitatively and quantitatively. Results: The results of 3D occlusal contact distribution obtained by the above five methods were basically consistent. The total occlusal contact area obtained by 3D color difference map method, point cloud analysis method, virtual articulating paper method, silicone interocclusal recording material method and scanned articulating paper mark method were 133.10 mm 2, 142.08 mm 2, 128.95 mm 2, 163.31 mm 2, and 100.55 mm 2 respectively. There was little difference between the results of three digital analysis methods. The results of occlusal contact area obtained by the digital methods and the traditional methods were different. Conclusion: The three digital analysis methods can provide reliable and accurate analysis results of occlusal contact distribution and occlusal contact area of dental model. The results obtained by these methods can serve as references for the digital occlusal surface design of dental prosthesis and clinical occlusal analysis.

Key words: Bite force, Dental models, Dental occlusion, Imaging, three-dimensional

CLC Number: 

  • R783

Figure 1

The plaster models used in the study"

Figure 2

Digital models (A) and unified triangular mesh data (B)"

Figure 3

Flipping the normal of mandibular model (A), 3D color difference map (B), manually selecting the boundaries of colored areas (C), and the result of occlusal contacting area (D)"

Figure 4

Clipped mandibular model (A), the result of 3D deviation analysis (B), and occlusal contact distribution (C)"

Figure 5

Selecting the occluding-related area of mandibular model (A), establishment of “virtual articulating paper” model (B), and occlusal contact distribution (C)"

Figure 6

The mandibular model combined with ball markers and silicone interocclusal recording material (A), the result of superimposition (B), analyzing the thickness of silicone material (C), and occlusal contact distribution (D)"

Figure 7

The result of scanning the articulating paper marks (A) and occlusal contact distribution (B)"

Figure 8

The occlusal contact distribution obtained by five methods A, 3D color difference map method; B, point cloud analysis method; C, virtual articulating paper method; D, silicone interocclusal recording material method; E, articulating paper mark scanning method."

Table 1

Comparation of the occlusal contact area obtained by five methods /mm2"

Items Digital occlusal analysis methods Traditional occlusal analysis methods
3D color difference
map method
Point cloud analysis method Virtual articulating paper method Silicone interocclusal recording material method Articulating paper mark scanning method
Occlusal contact area of anterior region 11.06 16.49 14.69 25.26 12.78
Occlusal contact area of posterior region 122.04 125.59 114.26 138.04 87.77
Occlusal contact area of left side 78.76 87.47 77.22 97.49 60.31
Occlusal contact area of right side 54.34 54.61 51.72 65.82 40.24
Total occlusal contact area 133.10 142.08 128.95 163.31 100.55
[1] 马斐斐, 胡秀莲, 林野 . 口腔种植修复与咬合[J]. 实用口腔医学杂志, 2013,29(1):121-123.
[2] Foz AM, Artese HP, Horliana AC , et al. Occlusal adjustment associated with periodontal therapy: A systematic review[J]. J Dent, 2012,40(12):1025-1035.
[3] 曾艳, 王嘉德 . 牙体牙髓病临床问题解析Ⅱ. 牙齿的慢性损伤性疾病[J]. 中华口腔医学杂志, 2009,44(7):441-443.
[4] 谢秋菲 . 牙体解剖与口腔生理学 [M]. 北京: 北京大学医学出版社, 2013.
[5] Abduo J, Bennamoun M, Tennant M , et al. Effect of prosthodontic planning on intercuspal occlusal contacts: Comparison of digital and conventional planning[J]. Comput Biol Med, 2015,60:143-150.
[6] Moreno-Hay I, Okeson JP . Does altering the occlusal vertical dimension produce temporomandibular disorders? A literature review[J]. J Oral Rehabil, 2015,42(11):875-882.
[7] 韩科, 张豪 . 牙合学理论与临床实践 [M]. 北京: 人民军医出版社, 2014.
[8] 宋倩, 王辉, 冯春雷 , 等. 咬合纸指导调牙合可靠性的定量研究[J]. 牙体牙髓牙周病学杂志, 2016,26(2):86-90.
[9] Koos B, Godt A, Schille C , et al. Precision of an instrumentation-based method of analyzing occlusion and its resulting distribution of forces in the dental arch[J]. J Orofac Orthop, 2010,71(6):403-410.
[10] Forrester SE, Presswood RG, Toy AC , et al. Occlusal measurement method can affect SEMG activity during occlusion[J]. J Oral Rehabil, 2011,38(9):655-660.
[11] 赵一姣, 王勇, 吕培军 . 一种基于数字化牙颌模型的三维咬合分析方法[J]. 北京大学学报(医学版), 2008,40(1):109-111.
[12] Gintaute A, Keeling AJ, Osnes CA , et al. Precision of maxillo-mandibular registration with intraoral scanners in vitro [J]. J Prosthodont Res, 2019, pii: S1883- 1958(19) 30145-8. doi: 10.1016/j.jpor.2019.05.006.[Epub ahead of print].
[13] Lee H, Cha J, Chun YS , et al. Comparison of the occlusal contact area of virtual models and actual models: a comparative in vitro study on Class Ⅰ and Class Ⅱ malocclusion models[J]. Bmc Oral Health, 2018,18(1):109.
[14] 陈磊, 张豪, 冯海兰 , 等. 正常受试者单侧咀嚼运动中的牙合接触模式[J]. 北京大学学报(医学版), 2009,41(1):90-94.
[15] Abduo J . Geometrical effects of conventional and digital prosthodontic planning wax-ups on lateral occlusal contact number, contact area, and steepness[J]. J Oral Sci, 2017,59(3):431-438.
[16] Iwase Y, Saitoh I, Okamoto A , et al. Do occlusal contact areas of maximum closing position during gum chewing and intercuspal position coincide?[J]. Arch Oral Biol, 2011,56(12):1616-1623.
[17] Schelb E, Kaiser DA, Brukl CE . Thickness and marking characteristics of occlusal registration strips[J]. J Prosthet Dent, 1985,54(1):122-126.
[18] Cohen-Levy J, Cohen N . Computerized analysis of occlusal contacts after lingual orthodontic treatment in adults[J]. Int Orthod, 2011,9(4):410-431.
[19] Qadeer S, Kerstein R, Kim RJ , et al. Relationship between arti-culation paper mark size and percentage of force measured with compu-terized occlusal analysis[J]. J Adv Prosthodont, 2012,4(1):7-12.
[20] Kerstein RB . Articulating paper mark misconceptions and compu-terized occlusal analysis technology: A clinical brief[J]. Dent Implantol Update, 2008,19(6):41-46.
[21] Toledo MF, Jóias RP, Marques-Iasi YS , et al. Thickness and marking quality of different occlusal contact registration strips[J]. J Appl Oral Sci, 2014,22(6):516-521.
[22] Malta Barbosa J, Urtula AB, Hirata R , et al. Thickness evaluation of articulating papers and foils[J]. J Esthet Restor Dent, 2018,30(1):70-72.
[23] Saraçoġlu A, Ozpinar B . In vivo and in vitro evaluation of occlusal indicator sensitivity[J]. J Prosthet Dent, 2002,88(5):522-526.
[24] Matsui Y, Ohno K, Michi K , et al. A computerized method for evaluating balance of occlusal load[J]. J Oral Rehabil, 1996,23(8):530-535.
[25] Imamura Y, Sato Y, Kitagawa N , et al. Influence of occlusal loading force on occlusal contacts in natural dentition[J]. J Prosthodont Res, 2015,59(2):113-120.
[26] Augusti D, Augusti G, Re D , et al. Effect of different dental articulating papers on SEMG activity during maximum clenching[J]. J Electromyogr Kinesiol, 2015,25(4):612-618.
[27] Sharma A, Rahul GR, Poduval ST , et al. History of materials used for recording static and dynamic occlusal contact marks: a literature review[J]. J Clin Exp Dent, 2013,5(1):e48-e53.
[28] 易新竹 . 牙合学[M]. 北京: 人民卫生出版社, 2012.
[29] Makino E, Nomura M, Motegi E , et al. Effect of orthodontic treatment on occlusal condition and masticatory function[J]. Bull Tokyo Dent Coll, 2014,55(4):185-197.
[30] Horie T, Kanazawa M, Komagamine Y , et al. Association between near occlusal contact areas and mixing ability[J]. J Oral Rehabil, 2014,41(11):829-835.
[31] 刘洋 . 调牙合——临床实用技术图解 [M]. 南京: 江苏凤凰科学技术出版社, 2018.
[32] Brizuela-Velasco A, Álvarez-Arenal Á, Ellakuria-Echevarria J , et al. Influence of articulating paper thickness on occlusal contacts registration: A preliminary report[J]. Int J Prosthodont, 2015,28(4):360-362.
[33] Komiyama O, Obara R, Iida T , et al. Comparison of direct and indirect occlusal contact examinations with different clenching intensities[J]. J Oral Rehabil, 2015,42(3):185-191.
[34] 程明轩, 姜婷, 孙玉春 , 等. 比较口内扫描和模型扫描对数字化牙列模型咬合定量分析的影响[J]. 北京大学学报(医学版), 2018,50(1):136-140.
[35] Ayuso-Montero R, Mariano-Hernandez Y, Khoury-Ribas L , et al. Reliability and validity of T-scan and 3D intraoral scanning for measuring the occlusal contact area[J]. J Prosthodont, 2019. doi: 10.1111/jopr.13096.
[36] Gupta S, Tarannum F, Gupta NK , et al. Effect of head posture on tooth contacts in dentate and complete denture wearers using computerized occlusal analysis system[J]. J Indian Prosthodont Soc, 2017,17(3):250-254.
[37] Nishimori H, Iida T, Kamiyama H , et al. Comparing the occlusal contact area of individual teeth during low-level clenching[J]. J Oral Sci, 2017,59(3):337-342.
[1] Yuxuan TIAN,Mingjian RUAN,Yi LIU,Derun LI,Jingyun WU,Qi SHEN,Yu FAN,Jie JIN. Predictive effect of the dual-parametric MRI modified maximum diameter of the lesions with PI-RADS 4 and 5 on the clinically significant prostate cancer [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 567-574.
[2] Liang LYU,Mingjin ZHANG,Aonan WEN,Yijiao ZHAO,Yong WANG,Jing LI,Gengchen YANG,Dawei LIU. Preliminary evaluation of chin symmetry with three dimentional soft tissue spatial angle wireframe template [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 106-110.
[3] Bochun MAO,Yajing TIAN,Xuedong WANG,Jing LI,Yanheng ZHOU. Soft and hard tissue changes of hyperdivergent class Ⅱ patients before and after orthodontic extraction treatment [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 111-119.
[4] Xiaotong LING,Liuyang QU,Danni ZHENG,Jing YANG,Xuebing YAN,Denggao LIU,Yan GAO. Three-dimensional radiographic features of calcifying odontogenic cyst and calcifying epithelial odontogenic tumor [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 131-137.
[5] Yi LIU,Chang-wei YUAN,Jing-yun WU,Qi SHEN,Jiang-xi XIAO,Zheng ZHAO,Xiao-ying WANG,Xue-song LI,Zhi-song HE,Li-qun ZHOU. Diagnostic efficacy of prostate cancer using targeted biopsy with 6-core systematic biopsy for patients with PI-RADS 5 [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 812-817.
[6] Chang-wei YUAN,De-run LI,Zhi-hua LI,Yi LIU,Gang-zhi SHAN,Xue-song LI,Li-qun ZHOU. Application of dynamic contrast enhanced status in multiparametric magnetic resonance imaging for prostatic cancer with PI-RADS 4 lesion [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 838-842.
[7] Zhan-yi ZHANG,Fan ZHANG,Ye YAN,Cai-guang CAO,Chang-jian LI,Shao-hui DENG,Yue-hao SUN,Tian-liang HUANG,Yun-he GUAN,Nan LI,Min LU,Zhen-hua HU,Shu-dong ZHANG. Near-infrared targeted probe designed for intraoperative imaging of prostatic neurovascular bundles [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 843-850.
[8] Zhuo-hua LIN,Ru-yi CAI,Yang SUN,Rong MU,Li-gang CUI. Methodology and clinical use of superb microvascular imaging in assessing micro-circulation changes of fingertips in systemic sclerosis [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 636-640.
[9] Ying LIU,Ran HUO,Hui-min XU,Zheng WANG,Tao WANG,Hui-shu YUAN. Correlations between plaque characteristics and cerebral blood flow in patients with moderate to severe carotid stenosis using magnetic resonance vessel wall imaging [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 646-651.
[10] Qiang FU,Guan-ying GAO,Yan XU,Zhuo-hua LIN,You-jing SUN,Li-gang CUI. Comparative study of ultrasound and magnetic resonance imaging in the diagnosis of asymptomatic anterosuperior acetabular labrum tears [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 665-669.
[11] Xiang LIU,Hui-hui XIE,Yu-feng XU,Xiao-dong ZHANG,Xiao-feng TAO,Lin LIU,Xiao-ying WANG. Value of artificial intelligence in the improvement of diagnostic consistency of radiology residents [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 670-675.
[12] Wen ZHANG,Xiao-jing LIU,Zi-li LI,Yi ZHANG. Effect of alar base cinch suture based on anatomic landmarks on the morphology of nasolabial region in patients after orthognathic surgery [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 736-742.
[13] Meng-en OU,Yun DING,Wei-feng TANG,Yong-sheng ZHOU. Three-dimensional finite element analysis of cement flow in abutment margin-crown platform switching [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 548-552.
[14] Li-jia MA,Pan-pan HU,Xiao-guang LIU. Spinal metastases combined with leptomeningeal metastasis: A case report [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 563-566.
[15] Ao-nan WEN,Wei LIU,Da-wei LIU,Yu-jia ZHU,Ning XIAO,Yong WANG,Yi-jiao ZHAO. Preliminary evaluation of the trueness of 5 chairside 3D facial scanning techniques [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 343-350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!