Journal of Peking University (Health Sciences) ›› 2023, Vol. 55 ›› Issue (5): 899-909. doi: 10.19723/j.issn.1671-167X.2023.05.019

Previous Articles     Next Articles

Efficacy analysis of autologous facet joint bone block in lumbar interbody fusion of osteoporosis patients

Da-wei WANG,Hua-dong WANG,Li LI,Xin YIN,Wei HUANG,Ji-dong GUO,Ya-feng YANG,Yi-hao LIU,Yang ZHENG*()   

  1. Department of Spine Surgery, the Fourth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
  • Received:2022-11-01 Online:2023-10-18 Published:2023-10-09
  • Contact: Yang ZHENG E-mail:yangzheng@hsc.pku.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(82100933)

RICH HTML

  

Abstract:

Objective: To compare and analyze the feasibility of autologous facet joint bone block as an alternative to polyetheretherketone (PEEK) cage in lumbar intervertebral fusion surgery for patients with osteoporosis. Methods: From December 2018 to June 2021, the case data of patients with osteoporosis (T value ≤ -2.5 on dual energy X-ray bone density) who underwent posterior lumbar interbody fusion in the Fourth Medical Center, Chinese PLA General Hospital were retrospectively reviewed. All the cases were followed up for no less than 12 months and were divided into two groups according to the differences of interbody fusion materials: the autologous facet joint bone block group (autogenous bone group) and the PEEK cage group (PEEK group). The general data [such as age, gender, body mass index (BMI), primary diagnosis, distribution of fusion segments, bone mineral density of lumbar (BMD), incidence of preoperative complications], the perioperative data (such as duration of operation, intraoperative blood loss, postoperative drainage, perioperative allogeneic blood transfusion rate), and the incidence of postoperative complications were compared between the two groups. Imaging parameters (disc height, lumbar lordosis angle, segment lordosis angle, segmental lordosis angle, disc height improvement rate, and fusion rate) and lumbar functional scores [visual analogue scale (VAS), Oswestry disability index (ODI), Japanese Orthopedics Association (JOA) score for lower back pain] were compared to evaluate the clinical efficacy between the kinds of intervertebral fusion materials 1 week, 3 months and 6 months postoperative and at the last follow-up. Results: A total of 118 patients were enrolled, including 68 cases in the autogenous bone group and 50 cases in the PEEK group, there were no statistical differences in age, gender, BMI, primary diagnosis, distribution of fusion segments, BMD, incidence of preoperative complications, duration of operation, intraoperative blood loss, postoperative drainage, perioperative allogeneic blood transfusion rate, incidence of postoperative complications, all the preoperative imaging parameters and all the lumbar function scores between the two groups (P>0.05). Postoperative superficial surgical site infections occurred in 3 patients in the autogenous bone group and 2 patients in the PEEK group. At the last follow-up, 3 cases of intervertebral graft collapse occurred in the autogenous bone group and 5 cases in the PEEK group, 1 case of graft subsidence in the autogenous bone group and 1 case in the PEEK group. All the imaging parameters showed significant differences between postoperation and preoperation (P < 0.05), and all the imaging parameters showed significant differences between 1 week and 3 months postoperative in both groups (P < 0.05). The height, angle of fusion gap in the autogenous bone group were lower than those in the PEEK group 1 week postoperatively (P < 0.05), and the fusion gap height improvement rate in the autogenous bone group was lower than that in the PEEK group (P < 0.05). The cases in both groups started to show final fusion 3 months after surgery, and the fusion rate in the autogenous bone group was 75% 6 months postoperatively, which was significantly higher than the rate of 56% in the PEEK group (P < 0.05), and there was no statistically significant difference in the final fusion rate between the two groups (P>0.05). The ODI, the postoperative VAS score was significantly lower than that in preoperation, while the postoperative JOA score was significantly higher than that in preoperation (P < 0.05). The ODI was lower while the JOA score was higher of the autogenous bone group than that of the PEEK group 6 months postoperatively (P < 0.05). Conclusion: In osteoporosis patients, good interbody fusion rate and improvement of lumbar vertebral function can be obtained by using autologous facet joint bone block or PEEK cage, while the fusion rate and the improvement of lumbar function with autologous facet joint bone block are better than those with PEEK cage 6 months post-operatively. PEEK cage is superior to autologous facet joint bone block in intervertebral distraction and improvement of lumbar lordosis. Significant disc space subsidence occurred in osteoporotic patients within 3 months after lumbar interbody fusion, and the subsidence of PEEK cage was more obvious than that of autologous facet joint bone block.

Key words: Spinal fusion, Autologous facet joint, Bone transplantation, Osteoporosis, Lumbar vertebrae

CLC Number: 

  • R681.5

Figure 1

Typical examples of autologous facet joint bone block before and after revision A, anterior view of a completely autologous facet joint bone block, about 22 mm long; B, lateral view of a completely autologous facet joint bone block, about 20 mm wide; C, anterior view of a trimmed autologous facet joint bone block, about 18 mm long; D, lateral view of autologous facet joint bone block, about 10 mm wide."

Figure 2

Flow chart of case screening PEEK, polyetheretherketone."

Table 1

Comparation of baseline and surgical information between the two groups"

Parameters Autogenous bone group PEEK group P value
Male 33.8% 34.0% 0.984
Age/years, ${\bar x}$±s 64.46±5.67 64.60±5.18 0.888
BMI/(kg/m2), ${\bar x}$±s 23.84±2.64 23.81±2.83 0.943
Main diagnosis(A/B/C/D) 18/31/11/8 14/23/8/5 0.991
Fusion segment(L4-L5/L5-S1) 41/27 30/20 0.974
Bone density of lumbar/(g/cm2), ${\bar x}$±s 0.78±0.11 0.76±0.12 0.939
Operation time/min, ${\bar x}$±s 126.00±12.29 127.16±10.34 0.590
Blood loss/mL, ${\bar x}$±s 221.99±49.17 223.40±54.39 0.883
Postoperative drainage/mL, ${\bar x}$±s 281.69±58.85 283.40±46.47 0.865
Allogeneic blood utilization 11.8% 14.0% 0.719
Length of hospitalization/d, ${\bar x}$±s 12.32±1.72 12.18±1.48 0.636
Follow-up time/months, ${\bar x}$±s 16.43±2.59 16.42±2.38 0.989

Table 2

Comparation of radiologic parameters between the two groups"

Parameters Preoperation 1 week postoperative 3 months postoperative 6 months postoperative Last follow-up
DH/mm, ${\bar x}$±s
    Autogenous bone group 6.83±1.63 10.29±1.53abc 10.02±1.62a 9.82±1.62a 9.72±1.61a
    PEEK group 6.81±1.48 11.01±1.48ab 10.04±1.43a 9.78±1.47a 9.69±1.43a
DH improvement rate
    Autogenous bone group 50.4% 47.1% 44.4% 44.1%
    PEEK group 61.8% 47.5% 44.1% 44.1%
DL/(°), ${\bar x}$±s
    Autogenous bone group 8.59±4.12 14.73±3.06abc 13.22±3.14a 12.74±3.14a 12.71±5.02a
    PEEK group 8.62±4.32 15.95±3.07ab 13.24±3.17a 12.25±3.26a 12.12±3.23a
SL/(°), ${\bar x}$±s
    Autogenous bone group 12.72±4.74 17.81±2.88ab 16.63±2.83a 16.32±2.93a 16.26±3.00a
    PEEK group 12.71±5.02 18.71±2.82ab 16.65±2.93a 16.04±3.05a 15.81±3.14a
LL/(°), ${\bar x}$±s
    Autogenous bone group 34.69±8.45 40.10±6.75ab 38.24±6.64a 37.39±6.40a 37.18±6.56a
    PEEK group 34.73±8.49 41.57±7.06ab 38.24±6.80a 37.36±6.60a 37.09±6.75a
Fusion rate
    Autogenous bone group 7.4% 75.0%c 94.1%
    PEEK group 6.0% 56.0% 90.0%

Figure 3

Case 1, male, 68 years old, diagnosed with lumbar disc herniation (L4-L5) and osteoporosis, underwent posterior L4-L5 modified laminectomy decompression, interbody fusion and internal fixation A and B, preoperative lumbar radiographs showed narrowing of L4-L5 intervertebral space, DH=9.5 mm, DL=10.2°, SL=14.4°, LL=33.6°; C and D, lumbar radiographs 1 week postoperative showed autologous facet joint bone block in intervertebral space, DH=12.7 mm, DL=13.2°, SL=16.7°, LL=36.1°; E and F, lumbar radiographs 15.5 months postoperative showed well intervertebral bony fusion, DH=10.4 mm, DL=11.9°, SL=14.9°, LL=32.4°; G and H, lumbar CT reconstruction image showed intervertebral bone bridge formation. DH, disc height; DL, disc lordosis; SL, segmental lordosis; LL, lumbar lordosis."

Figure 4

Case 2, female, 63 years old, diagnosed with lumbar stenosis (L4-L5) and osteoporosis, and underwent posterior L4-L5 modified laminectomy decompression, interbody fusion and internal fixation A and B, preoperative lumbar radiographs showed narrowing of L4-L5 intervertebral space, DH=9.7 mm, DL=11.5°, SL=15.4°, LL=45.2°; C and D, lumbar radiographs 1 week postoperative showed PEEK cage in intervertebral space, DH=13.3 mm, DL=15.1°, SL=18.2°, LL=51.1°; E and F, lumbar radiographs 18 months postoperative showed well intervertebral bony fusion, DH=12.7 mm, DL=14.0°, SL=16.8°, LL=48.4°; G and H, lumbar CT reconstruction image showed intervertebral bone bridge formation. DH, disc height; DL, disc lordosis; SL, segmental lordosis; LL, lumbar lordosis; PEEK, polyetheretherketone."

Table 3

Comparation of VAS score, ODI and JOA score between the two groups"

Parameters Preoperation 1 week postoperative 3 months postoperative 6 months postoperative Last follow-up
VAS score, ${\bar x}$±s
    Autogenous bone group 5.18±0.83 1.82±0.73a 1.03±0.73a 0.53±0.50a 0.41±0.49a
    PEEK group 5.18±0.87 1.82±0.66a 1.02±0.69a 0.52±0.50a 0.41±0.50a
ODI, ${\bar x}$±s
    Autogenous bone group 36.54±2.92 26.06±3.39ab 20.34±3.13ab 16.46±2.30a
    PEEK group 36.54±3.11 25.98±2.98a 21.42±2.56a 16.46±2.32a
JOA score, ${\bar x}$±s
    Autogenous bone group 12.62±1.31 20.37±1.89a 23.78±1.60ab 25.82±2.04a
    PEEK group 12.60±1.36 20.36±2.04a 22.98±1.74a 25.82±1.72a
1 Wolfert AJ , Rompala A , Beyer GA , et al. The impact of osteoporosis on adverse outcomes after short fusion for degenerative lumbar disease[J]. Am Acad Orthop Surg, 2022, 30 (12): 573- 579.
doi: 10.5435/JAAOS-D-21-01258
2 Reid PC , Morr S , Kaiser MG . State of the union: A review of lumbar fusion indications and techniques for degenerative spine disease[J]. Neurosurg Spine, 2019, 31 (1): 1- 14.
doi: 10.3171/2019.4.SPINE18915
3 Zou D , Jiang S , Zhou S , et al. Prevalence of osteoporosis in patients undergoing lumbar fusion for lumbar degenerative diseases: A combination of DXA and Hounsfield units[J]. Spine (Phila Pa 1976), 2020, 45 (7): E406- E410.
doi: 10.1097/BRS.0000000000003284
4 孟海, 杨雍, 孙天胜, 等. 腰椎后路手术椎间融合器应用的专家共识[J]. 中国脊柱脊髓杂志, 2021, 31 (4): 379- 384.
5 王东亮, 毛兆虎, 杨文玖, 等. 自体下关节突骨块在腰椎椎间融合中的应用解剖[J]. 中华实验外科杂志, 2013, 30 (12): 2726- 2727.
6 Kai Y , Oyama M , Morooka M . Posterior lumbar interbody fusion using local facet joint autograft and pedicle screw fixation[J]. Spine (Phila Pa 1976), 2004, 29 (1): 41- 46.
doi: 10.1097/01.BRS.0000103940.57588.50
7 张绍东, 唐天驷, 杨惠林, 等. 保留部分关节突后路腰椎间融合治疗腰椎间盘退变性疾病[J]. 中国脊柱脊髓杂志, 2004, 14 (6): 360- 363.
8 Siepe CJ , Stosch-Wiechert K , Heider F , et al. Anterior stand-alone fusion revisited: A prospective clinical, X-ray and CT investigation[J]. Eur Spine J, 2015, 24 (4): 838- 851.
doi: 10.1007/s00586-014-3642-y
9 高志强, 李洋, 罗飞, 等. 对脊柱椎间融合的影像学评价策略[J]. 中国组织工程研究, 2015, 19 (48): 7825- 7830.
10 Yao YC , Chou PH , Lin HH , et al. Risk factors of cage subsi-dence in patients received minimally invasive transforaminal lumbar interbody fusion[J]. Spine (Phila Pa 1976), 2020, 45 (19): E1279- E1285.
doi: 10.1097/BRS.0000000000003557
11 Park MK , Kim KT , Bang WS , et al. Risk factors for cage migration and cage retropulsion following transforaminal lumbar interbody fusion[J]. Spine J, 2019, 19 (3): 437- 447.
doi: 10.1016/j.spinee.2018.08.007
12 Strage KE , Parry JA , Mauffrey C . Standardizing statistics and data reporting in orthopaedic research[J]. Eur J Orthop Surg Traumatol, 2021, 31 (1): 1- 6.
doi: 10.1007/s00590-020-02843-8
13 杨喆, 谭志军, 张杨, 等. 医学研究中计量资料组间比较统计分析方法的正确应用[J]. 中国儿童保健杂志, 2019, 27 (10): 1157- 1160.
14 Kuslich SD , Ulstrom CL , Griffith SL , et al. The Bagby and Kuslich method of lumbar interbody fusion: History, techniques, and 2-year follow-up results of a United States prospective, multicenter trial[J]. Spine (Phila Pa 1976), 1998, 23 (11): 1267- 1278.
doi: 10.1097/00007632-199806010-00019
15 唐强, 钟德君, 王清, 等. 椎间自体骨植骨面积比与椎间融合率的关系[J]. 中国组织工程研究, 2021, 25 (36): 5821- 5826.
16 Amorim-Barbosa T , Pereira C , Catelas D , et al. Risk factors for cage subsidence and clinical outcomes after transforaminal and posterior lumbar interbody fusion[J]. Eur J Orthop Surg Traumatol, 2022, 32 (7): 1291- 1299.
17 Meng B , Bunch J , Burton D , et al. Lumbar interbody fusion: Recent advances in surgical techniques and bone healing strategies[J]. Eur Spine J, 2021, 30 (1): 22- 33.
doi: 10.1007/s00586-020-06596-0
18 白文媛, 顾洪生, 廖振华, 等. 正常成人腰椎间盘相关参数的测量和意义[J]. 中国临床解剖学杂志, 2013, 31 (5): 505- 510.
19 中国健康促进基金会基层医疗机构骨质疏松症诊断与治疗专家共识委员会. 基层医疗机构骨质疏松症诊断和治疗专家共识(2021)[J]. 中国骨质疏松杂志, 2021, 27 (7): 937- 944.
20 Wagner SC , Kang DG , Steelman T , et al. Diagnosing the undiagnosed: Osteoporosis in patients undergoing lumbar fusion[J]. Spine (Phila Pa 1976), 2016, 41 (21): E1279- E1283.
doi: 10.1097/BRS.0000000000001612
21 Khalid SI , Nunna RS , Maasarani S , et al. Association of osteopenia and osteoporosis with higher rates of pseudarthrosis and revision surgery in adult patients undergoing single-level lumbar fusion[J]. Neurosurg Focus, 2020, 49 (2): E6.
22 Yu Y , Robinson DL , Ackland DC , et al. Influence of the geometric and material properties of lumbar endplate on lumbar interbody fusion failure: A systematic review[J]. J Orthop Surg Res, 2022, 17 (1): 224.
23 赵龙, 曾建成, 谢天航, 等. 腰椎椎间融合术后椎间融合器沉降的研究进展[J]. 中国修复重建外科杂志, 2021, 35 (8): 1063- 1067.
24 郭新虎, 孟妍, 齐强, 等. 后路腰椎椎体间融合术后cage移位的危险因素分析及处理策略[J]. 中国脊柱脊髓杂志, 2022, 32 (1): 42- 49.
25 Govindarajan V , Diaz A , Perez-Roman RJ , et al. Osteoporosis treatment in patients undergoing spinal fusion: A systematic review and meta-analysis[J]. Neurosurg Focus, 2021, 50 (6): E9.
26 Tani S , Ishikawa K , Kudo Y , et al. The effect of denosumab on pedicle screw fixation: A prospective 2-year longitudinal study using finite element analysis[J]. J Orthop Surg Res, 2021, 16 (1): 219.
27 金贺荣, 崔敬斌, 邵苍, 等. 椎间融合器材料: 临床应用的优势与关注热点[J]. 中国组织工程研究, 2022, 26 (22): 3592- 3597.
28 Formica M , Vallerga D , Zanirato A , et al. Fusion rate and influence of surgery-related factors in lumbar interbody arthrodesis for degenerative spine diseases: A meta-analysis and systematic review[J]. Musculoskelet Surg, 2020, 104 (1): 1- 15.
29 万东东, 胡茂忠, 许东浩, 等. 髂骨取骨术后并发症的研究进展[J]. 中国矫形外科杂志, 2016, 24 (12): 1096- 1100.
30 刘军, 万豫尧, 王慧敏, 等. 改良自体棘突腰椎椎体间植骨融合术的临床应用[J]. 广东医学, 2006, 27 (7): 994- 996.
31 Tavares WM , de Franca SA , Paiva WS , et al. A systematic review and meta-analysis of fusion rate enhancements and bone graft options for spine surgery[J]. Sci Rep, 2022, 12 (1): 7546.
32 Geurts J , Ramp D , Schären S , et al. Georg-Schmorl-Prize of the German Spine Society (DWG) 2016: Comparison of in vitro osteogenic potential of iliac crest and degenerative facet joint bone autografts for intervertebral fusion in lumbar spinal stenosis[J]. Eur Spine J, 2017, 26 (5): 1408- 1415.
33 万标林, 梁伟国, 王斌, 等. 自体椎板关节突柱状植骨融合治疗腰椎退行性疾病的疗效分析[J]. 中国矫形外科杂志, 2012, 20 (11): 964- 967.
34 王璐璐, 陈晓亮, 马进峰, 等. 自体下关节突骨块与Cage椎体间融合效果比较[J]. 青岛大学医学院学报, 2012, 48 (1): 30- 32.
[1] Xinzhu BAI,Jinhui HE,Songsong LU,Chun LI,Yilin WANG,Jian XIONG. Vertebral fractures combined with prolonged activated partial prothrombin time: A case report [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 371-374.
[2] Wei ZHU,Bin ZHU,Xiao-guang LIU. Influential factors related to functional status after full-endoscopic lumbar discectomy [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 537-542.
[3] Jie ZHU,Jian-hong LI,Ting-ting YUAN,Lu He,Yu-hong LIANG. Relationship between periodontitis and osteoporosis in postmenopausal women [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1115-1118.
[4] Peng WANG,Hua WU,Ying CHE,Dong-wei FAN,Jue LIU,Li-yuan TAO. Evaluation of screening accuracy on osteoporosis self-assessment tool for Asians and its cut-off value in healthy physical examination population [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1085-1090.
[5] SHANG Lan-pu, TIAN Yun, LIU Xiao-guang. Clinical comparison of polymethylmethacrylate and bone cement in the treatment of osteoporotic vertebral compression fractures: a retrospective study [J]. Journal of Peking University(Health Sciences), 2017, 49(2): 267-273.
[6] ZHENG Yi-lin, SONG Wen-fang, WANG Dong-xin. Comparison between flexible laryngeal mask airway and reinforced tracheal tube used for lumbar vertebral surgery in prone position [J]. Journal of Peking University(Health Sciences), 2017, 49(2): 262-266.
[7] SUN Hao-lin, LI Chun-de△, LI Xu-wen, YI Xiao-dong, LIU Hong, LU Hai-lin, LI Hong, YU Zheng-rong, WANG Yu. Polymethylmethacrylate augmentation of bone cement injectable cannulated pedicle screws was used to treat degenerative lumbar scoliosis with osteoporosis [J]. Journal of Peking University(Health Sciences), 2017, 49(2): 256-261.
[8] SUN Hao-lin, LI Chun-de, YANG Ze-chuan, YI Xiao-dong, LIU Hong, LU Hai-lin, LI Hong, WANG Yu. Polymethylmethacrylate augmentation of bone cement-injectable cannulated pedicle screws for the treatment of degenerative lumbar diseases with osteoporosis [J]. Journal of Peking University(Health Sciences), 2016, 48(6): 1019-1025.
[9] WANG He, HU Zhao-heng, CHEN Ling2, PAN Yu3. Influence of history of oral bisphosphonates on the incidence rate of fever after intravenous injection of zoledronic acid in patients with osteoporosis [J]. Journal of Peking University(Health Sciences), 2016, 48(4): 680-682.
[10] LI Bing-yan, GENG Zhi-yu, WANG Dong-xin. Effect of dexmedetomidine infusion on postoperative recovery for patients undergoing major spinal surgery during propofol anesthesia [J]. Journal of Peking University(Health Sciences), 2016, 48(3): 529-533.
[11] LI Ning, LIU Hao-nan, GONG Xiao-feng, ZHU Shi-wen, WU Xin-bao, HE Liang. Epidemiological analysis of hospitalized patients with femoral neck fracture in a first-class hospital of Beijing [J]. Journal of Peking University(Health Sciences), 2016, 48(2): 292-296.
[12] LI Hong, LI Chun-de, YI Xiao-dong, LIU Hong, LU Hai-lin, WANG Yu. Analysis of the clinical outcomes of the over 5-year follow-up study of degenerative lumbar scoliosis treated with posterior decompression and instrumented fusion [J]. Journal of Peking University(Health Sciences), 2016, 48(2): 250-256.
[13] SUN Hao-Lin, LI Chun-De, ZHU Jia-Lin, YI Xiao-Dong, LIU Hong, LU Hai-Lin, LI Hong, YU Zheng-Rong, WANG Yu. Clinical research of percutaneous vertebroplasty or percutaneous kyphoplasty for treating osteoporotic vertebral compression fractures induced by glucocorticosteroid [J]. Journal of Peking University(Health Sciences), 2015, 47(2): 242-247.
[14] HUANG Tian-Ji, KOU Yu-Hui, YIN Xiao-Feng, XIONG Jian, ZHANG Pei-Xun, ZHANG Dian-Ying, FU Zhong-Guo, XUE Feng, JIANG Bao-Guo. Clinical characteristics and risk factors of newly developed vertebral fractures after vertebral augmentation [J]. Journal of Peking University(Health Sciences), 2015, 47(2): 237-241.
[15] FANG Liming, ZHANG Yajun△, ZHANG Jun, HUANG Nan, ZUO Zhenhua, LI Bing, WANG Bo, LIN Huagang. Minimally invasive percutaneous pedicle screw fixation for the treatment of thoracolumbar fractures and posterior ligamentous complex injuries [J]. Journal of Peking University(Health Sciences), 2012, 44(6): 851-854.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!