Journal of Peking University(Health Sciences) >
Cerebral blood flow measurements in patients with comorbid hypertension and depression using 3D arterial spin labeling
Received date: 2017-04-25
Online published: 2019-04-26
Supported by
the National Science and Technology Pillar Program during the 11th Five-Year Plan(2009BA77B00)
Objective: To evaluate cerebral blood flow (CBF) in patients with comorbid hypertension in depression using 3D pseudocontinuous arterial spin labeling (3D pcASL) and to compare the dif-ferences of CBF values in depression, hypertension, and comorbid hypertension between depression and healthy control groups. To investigate the correlation between CBF values and degrees of depression.Methods: Sixteen patients with depression (depression group, 3 males and 13 females, age range of 42-72 years old), sixteen patients with hypertension (hypertension group, 3 males and 13 females, age range of 41-68 years old), sixteen patients with comorbid hypertension in depression (comorbidity group, 3 males and 13 females, age range of 45-74 years old), and sixteen healthy controls (control group, 3 males and 13 females, age range of 43-68 years old) were recruited. 3D pcASL sequence was performed by GE 3.0T magnetic resonance scanner and CBF map was generated automatically. Statistical parametric mapping (SPM8) was performed to preprocess the CBF map, which was spatially normalized and smoothed. Comparison of the CBF values among the four groups was conducted by ANOVA. Correlation between the average CBF values in areas of decreased CBF and Hamilton depression scale (HAMD-17) was investigated.Results: The patients with comorbid hypertension in depression demonstrated lower CBF in bilateral superior frontal gyri, middle frontal gyri, inferior frontal gyri, right superior parietal gyrus, right inferior parietal gyrus, right supramarginal gyrus, left caudate nucleus and left insula lobe in comparison with the controls. Compared with control group, CBF values decreased in bilateral frontal lobes, but did not reach statistical significance. There were no significant differences of CBF values between the patients with hypertension and control subjects. Compared with depression, the patients with comorbid hypertension in depression showed lower CBF values in bilateral frontal lobes and right supramarginal gyrus. Compared with hypertension, lower CBF values in left middle frontal gyrus in the patients with comorbid hypertension in depression were shown. Correlation analysis indicated that no correlation between CBF values and scores of HAMD-17 was shown.Conclusion: Although there were no significant decreases of CBF values in patients with depression and hypertension, regional hypoperfusions were observed in patients with comorbid hypertension in depression. Hypertension might play a sy-nergistic action on cerebral hypoperfusion in patients with comorbid hypertension in depression.
Ying LIU , Xiang-zhu ZENG , Zheng WANG , Han ZHANG , Xi-lin WANG , Hui-shu YUAN . Cerebral blood flow measurements in patients with comorbid hypertension and depression using 3D arterial spin labeling[J]. Journal of Peking University(Health Sciences), 2019 , 51(2) : 260 -264 . DOI: 10.19723/j.issn.1671-167X.2019.02.011
| [1] | Nezamzadeh M, Matson GB, Young K , et al. Improved pseudo-continuous arterial spin labeling for mapping brain perfusion[J]. J Magn Reson Imaging, 2010,31(6):1419-1427. |
| [2] | Shin DD, Liu TT, Wong EC , et al. Pseudocontinuous arterial spin labeling with optimized tagging efficiency[J]. Magn Reson Med, 2012,68(4):1135-1144. |
| [3] | Chen Y, Wang DJ, Detre JA . Test-retest reliability of arterial spin labeling with common labeling strategies[J]. J Magn Reson Imaging, 2011,33(4):940-949. |
| [4] | Gevers S, van Osch MJ, Bokkers RP , et al. Intra- and multicenter reproducibility of pulsed, continuous and pseudo-continuous arterial spin labeling methods for measuring cerebral perfusion[J]. J Cereb Blood Flow Metab, 2011,31(8):1706-1715. |
| [5] | Arnone D, Mclntosh AM, Ebmeier KP , et al. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses[J]. Eur Neuropsychopharmacol, 2012,22(1):1-16. |
| [6] | Bora E, Harrison BJ, Davey CG , et al. Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic circuits in major depressive disorder[J]. Psychol Med, 2012,42(4):671-681. |
| [7] | Colloby SJ, Firbank MJ, He J , et al. Regional cerebral blood flow in late-life depression: Arterial spin labelling magnetic resonance study[J]. Br J Psychiatry, 2012,200(2):150-155. |
| [8] | Ota M, Noda T, Sato N , et al. Characteristic distributions of regional cerebral blood flow changes in major depressive disorder patients: A pseudo-continuous arterial spin labeling (pCASL) study[J]. J Affect Disord, 2014,165:59-63. |
| [9] | Naismith SL, Norrie LM, Mowszowski L , et al. The neurobiology of depression in later-life: Clinical, neuropsychological, neuro-imaging and pathophysiological features[J]. Prog Neurobiol, 2012,98(1):99-143. |
| [10] | Detre JA, Wang J, Wang Z , et al. Arterial spin-labeled perfusion MRI in basic and clinical neuroscience[J]. Curr Opin Neurol, 2009,22(4):348-355. |
| [11] | J?rnum H, Eskildsen SF, Steffensen EG , et al. Longitudinal MRI study of cortical thickness, perfusion, and metabolite levels in major depressive disorder[J]. Acta Psychiatr Scand, 2011,124(6):435-446. |
| [12] | Ho TC, Wu J, Shin DD , et al. Altered cerebral perfusion in exe-cutive, affective, and motor networks during adolescent depression[J]. J Am Acad Child Adolesc Psychiatry, 2013,52(10):1076-1091. |
| [13] | Lui S, Parkes LM, Huang X , et al. Depressive disorders: focally altered cerebral perfusion measured with arterial spin-labeling MR imaging[J]. Radiology, 2009,251(2):476-484. |
| [14] | Duhameau B, Ferré JC, Jannin P , et al. Chronic and treatment-resistant depression: a study using arterial spin labeling perfusion MRI at 3 Tesla[J]. Psychiatry Res, 2010,182(2):111-116. |
| [15] | Walther S, H?fle O, Federspiel A , et al. Neural correlates of disbalanced motor control in major depression[J]. J Affect Disord, 2012,136(1/2):124-133. |
| [16] | 吕粟, 黄晓琦, 孙学礼 , 等. 抑郁症患者脑MR血流灌注的图像特征[J]. 中华放射学杂志, 2009,43(3):244-248. |
| [17] | Alosco ML, Gunstad J, Xu X , et al. The impact of hypertension on cerebral perfusion and cortical thickness in older adults[J]. J Am Soc Hypertens, 2014,8(8):561-570. |
/
| 〈 |
|
〉 |