Role of erythroblast-like Ter cells in the pathogenesis of collagen-induced arthritis

  • Ping WANG ,
  • Jing SONG ,
  • Xiang-yu FANG ,
  • Xin LI ,
  • Xu LIU ,
  • Yuan JIA ,
  • Zhan-guo LI ,
  • Fan-lei HU
Expand
  • 1. Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing 100044, China;
    2. State Key Laboratory of Natural and Biomime-tic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, China

Received date: 2019-03-18

  Online published: 2019-06-26

Supported by

Supported by the National Natural Science Foundation of China (81671604, 81302554, 31530020,81801617), the Beijing Nova Program (Z181100006218044) and the Fundamental Research Funds for the Central Universities: Peking University Clinical Medicine Plus X-Young Scholars Project (PKU2019LCXQ018)

Abstract

Objective: To explore the role of Ter cells in the development of the collagen-induced arthritis (CIA), we detected their quantity changes in the spleen of different stages of CIA mice and analyzed the correlation between Ter cells and the joint scores, and we also analyzed the correlation between Ter cells and the frequencies of T and B cell subsets, so as to further understand the pathogenesis of rheumatoid arthritis.Methods: The six to eight weeks DBA/1 mice were used to prepare CIA model. After the second immunization, we began to evaluate the joint score. According to the time of CIA onset and the joint score, the CIA mice were divided into three stages: early, peak and late stages. According to the final joint score, the CIA mice at the peak stage were subdivided into the high score group (score>8) and the low score group (score≤8). The frequencies of Ter cells in the spleen of the na?ve mice and the CIA mice at various stages and the frequencies of T and B cell subsets in the spleen of the CIA mice at the peak stage were detected by flow cytometry, then we carried on the correlation analysis. Results: The frequencies of Ter cells in the spleen of the CIA mice was significantly higher than those of the na?ve mice (8.522%±2.645% vs. 1.937%±0.725%, P<0.01), the frequencies of Ter cells in the spleen of the high score group mice was significantly lower than those of the low score group (6.217%±0.841% vs. 10.827%±0.917%, P<0.01). The frequencies of Th1 cells in the spleen of the high score group mice was significantly higher than those of the low score group mice (1.337%±0.110% vs. 0.727%±0.223%, P<0.05). The frequencies of Th17 cells in the spleen of the high score group mice was higher than those of the low score group mice (0.750%±0.171% vs. 0.477%±0.051%, P=0.099). The frequencies of germinal center B cells in the spleen of the high score group mice was significantly higher than those of the low score group mice (1.243%±0.057% vs. 1.097%±0.015%, P<0.05). Correlation analysis results showed that the frequencies of Ter cells in the spleen of the CIA mice at the peak stage was strongly negatively correlated with the frequencies of CD4 + T, Th1, Th17, and germinal center B cells, and was strongly positively correlated with the frequencies of B10 cells, indicating that these cells might have a protective effect in CIA. Studies on dynamic changes showed that the frequencies of Ter cells in the spleen of the CIA mice at the late stage was significantly lower than those at the peak stage (0.917%±0.588% vs. 8.522%±2.645%, P<0.001), suggesting the protective effect of these cells in arthritis. Conclusion: Ter cells were significantly increased in the spleen of the CIA mice at peak stage, and were negatively correlated with joint scores and pathogenic immune cells, and positively correlated with protective immune cells. Ter cells were significantly decreased in the spleen of the CIA mice at the late stage. What we mentioned above suggests that Ter cells might be involved in the progression of rheumatoid arthritis as an immunomodulatory cell,but further in vivo and in vitro experiments are needed to verify its specific effects and mechanism.

Cite this article

Ping WANG , Jing SONG , Xiang-yu FANG , Xin LI , Xu LIU , Yuan JIA , Zhan-guo LI , Fan-lei HU . Role of erythroblast-like Ter cells in the pathogenesis of collagen-induced arthritis[J]. Journal of Peking University(Health Sciences), 2019 , 51(3) : 445 -450 . DOI: 10.19723/j.issn.1671-167X.2019.03.011

References

[1] Smolen JS, Aletaha D, Barton A , et al. Rheumatoid arthritis[J]. Nat Rev Dis Primers, 2018,4:18001.
[2] McInnes IB, Schett G . The pathogenesis of rheumatoid arthritis[J]. N Engl J Med, 2011,365(23):2205-2219.
[3] Gol-Ara M, Jadidi-Niaragh F, Sadria R , et al. The role of diffe-rent subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis[J]. Arthritis, 2012,2012:805875.
[4] Kerkman PF , Rombouts Y, van der Voort EI, et al. Circulating plasmablasts/plasmacells as a source of anticitrullinated protein antibodies in patients with rheumatoid arthritis[J]. Ann Rheum Dis, 2013,72(7):1259-1263.
[5] Xu LL, Liu X, Liu HJ , et al. Impairment of granzyme B-pro-ducing regulatory B cells correlates with exacerbated rheumatoid arthritis[J]. Front Immunol, 2017,8:768.
[6] Guo CQ, Hu FL, Yi HF , et al. Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis[J]. Ann Rheum Dis, 2016,75(1):278-285.
[7] Han YM, Liu QY, Hou J , et al. Tumor-induced generation of splenic erythroblast-like Ter-cells promotes tumor progression[J]. Cell, 2018,173(3):634-648.
[8] Bessis N, Decker P, Assier E , et al. Arthritis models: usefulness and interpretation[J]. Semin Immunopathol, 2017,39(4):469-486.
[9] Gizinski AM, Fox DA . T cell subsets and their role in the pathogenesis of rheumatic disease[J]. Curr Opin Rheumatol, 2014,26(2):204-210.
[10] Dahdah A, Habir K, Nandakumar KS , et al. Germinal center B cells are essential for collagen-induced arthritis[J]. Arthritis Rheumatol, 2018,70(2):193-203.
[11] Daien CI, Gailhac S, Mura T , et al. Regulatory B10 cells are decreased in patients with rheumatoid arthritis and inversely correlated with disease activity[J]. Arthritis Rheumatol, 2014,66(8):2037-2046.
[12] Song ZQ, Yang F, Du H , et al. Role of artemin in non-small cell lung cancer[J]. Thorac Cancer, 2018,9(5):555-562.
[13] Wang J, Wang H, Cai J , et al. Artemin regulates CXCR4 expression to induce migration and invasion in pancreatic cancer cells through activation of NF-κB signaling[J]. Exp Cell Res, 2018,365(1):12-23.
[14] Gao L, Bo HJ, Wang Y , et al. Neurotrophic factor artemin promotes invasiveness and neurotrophic function of pancreatic adenocarcinoma in vivo and in vitro[J]. Pancreas, 2015,44(1):134-143.
Outlines

/