Journal of Peking University(Health Sciences) >
Exploring the association between SPRY gene family and non-syndromic oral clefts among Chinese populations using data of a next-generation sequencing study
Received date: 2019-03-18
Online published: 2019-06-26
Supported by
Supported by the National Natural Science Foundation of China (81573225) and the Fundamental Research Funds for the Central Universities: Peking University Medicine Seed Fund for Interdisciplinary Research (BMU2017MX018)
Ren ZHOU , Hong-chen ZHENG , Wen-yong LI , Meng-ying WANG , Si-yue WANG , Nan LI , Jing LI , Zhi-bo ZHOU , Tao WU , Hong-ping ZHU . Exploring the association between SPRY gene family and non-syndromic oral clefts among Chinese populations using data of a next-generation sequencing study[J]. Journal of Peking University(Health Sciences), 2019 , 51(3) : 564 -570 . DOI: 10.19723/j.issn.1671-167X.2019.03.028
| [1] | Panamonta V, Pradubwong S, Panamonta M , et al. Global birth prevalence of orofacial clefts: a systematic review[J]. J Med Assoc Thai, 2015,98(Suppl 7):S11-S21. |
| [2] | Dai L, Zhu J, Mao M , et al. Time trends in oral clefts in Chinese newborns: data from the Chinese National Birth Defects Monitoring Network[J]. Birth Defects Res A Clin Mol Teratol, 2010,88(1):41-47. |
| [3] | Beaty TH, Murray JC, Marazita ML , et al. A genome-wide association study of cleft lip with andwithout cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010,42(6):525-529. |
| [4] | Mangold E, Ludwig KU, Birnbaum S , et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate[J]. Nat Genet, 2010,42(1):24-26. |
| [5] | Leslie EJ, Carlson JC, Shaffer JR , et al. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13[J]. Hum Mol Genet, 2016,25(13):2862-2872. |
| [6] | Yu Y, Zuo X, He M , et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity[J]. Nat Commun, 2017,8:14364-14374. |
| [7] | Leslie EJ, Carlson JC, Shaffer JR , et al. Association studies of low-frequency coding variants in nonsyndromic cleft lip with or without cleft palate[J]. Am J Med Genet A, 2017,173(6):1531-1538. |
| [8] | Collins FS, Guyer MS, Charkravarti A . Variations on a theme: cataloging human DNA sequence variation[J]. Science, 1997,278(5343):1580-1581. |
| [9] | McCarthy MI, Abecasis GR, Cardon LR , et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges[J]. Nat Rev Genet, 2008,9(5):356-369. |
| [10] | Zuk O, Hechter E, Sunyaev SR , et al. The mystery of missing heritability: Genetic interactions create phantom heritability[J]. Proc Natl Acad Sci USA, 2012,109(4):1193-1198. |
| [11] | Thisse B, Thisse C . Functions and regulations of fibroblast growth factor signaling during embryonic development[J]. Dev Biol, 2005,287(2):390-402. |
| [12] | Mason JM, Morrison DJ, Basson MA , et al. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling[J]. Trends Cell Biol, 2006,16(1):45-54. |
| [13] | Stanier P, Pauws E . Development of the lip and palate: FGF signalling[J]. Front Oral Biol, 2012,16:71-80. |
| [14] | Ludwig KU, Mangold E, Herms S , et al. Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci[J]. Nat Genet, 2012,44(9):968-971. |
| [15] | Jia Z, Leslie EJ, Cooper ME , et al. Replication of 13q31.1 association in nonsyndromic cleft lip with cleft palate in Europeans[J]. Am J Med Genet A, 2015,167A(5):1054-1060. |
| [16] | Moreno Uribe LM, Fomina T, Munger RG , et al. A population-based study of effects of genetic loci on orofacial clefts[J]. J Dent Res, 2017,96(11):1322-1329. |
| [17] | Ward LD, Kellis M . HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants[J]. Nucleic Acids Res, 2012,40(Database issue):D930-D934. |
| [18] | Iyengar SFarnham PJ . KAP1 protein: an enigmatic master regulator of the genome[J]. J Biol Chem, 2011,286(30):26267-26276. |
| [19] | Hacohen N, Kramer S, Sutherland D , et al. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways[J]. Cell, 1998,92(2):253-263. |
| [20] | Gross I, Bassit B, Benezra M , et al. Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation[J]. J Biol Chem, 2001,276(49):46460-46468. |
| [21] | Impagnatiello MA, Weitzer S, Gannon G , et al. Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells[J]. J Cell Biol, 2001,152(5):1087-1098. |
| [22] | Yang X, Kilgallen S, Andreeva V , et al. Conditional expression of Spry1 in neural crest causes craniofacial and cardiac defects[J]. BMC Dev Biol, 2010,10:48-59. |
| [23] | Goodnough LH, Brugmann SA, Hu D , et al. Stage-dependent craniofacial defects resulting from Sprouty2 overexpression[J]. Dev Dyn, 2007,236(7):1918-1928. |
| [24] | Matsumura K, Taketomi T, Yoshizaki K , et al. Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling[J]. Biochem Biophys Res Commun, 2011,404(4):1076-1082. |
| [25] | Guilmatre A, Sharp AJ . Parent of origin effects[J]. Clin Genet, 2012,81(3):201-209. |
/
| 〈 |
|
〉 |