Journal of Peking University(Health Sciences) >
Expression pattern of different serotypes of adeno-associated viral vectors in mouse retina
Received date: 2018-04-13
Online published: 2020-10-15
Supported by
National Natural Science Foundation of China(81470666);National Natural Science Foundation of China(81770966)
Objective: To investigate the expression efficiency of exogenous gene mediated by different serotypes of adeno-associated virus (AAV) vectors in retina, and to compare the expression efficiency of AAV vector and two kinds of promoters commonly used in ophthalmology after transfection into mouse retina, so as to provide the basis for selecting appropriate AAV vector and promoter for gene therapy of retinitis pigmentosa. Methods: AAV2/2, AAV2/5, AAV2/8 and AAV2/9 were prepared. The C57BL/6J mice were injected subretinally with 1 μL purified AAV vectors (1.00×10 13 mg/L). Then the mice were killed 2 or 4 weeks after treatment, and the eyes were enucleated for frozen section. The expression of green fluorescent protein (GFP) was observed under the confocal microscope. Two kinds of promoters, CMV and CAG, were selectd, and the expression of AAV2/8-GFP-CMV and AAV2/8-GFP-CAG was observed under confocal microscope. Results: No bacterial infection or immune response were seen in the injected mice. 2 weeks after injection, the GFP green fluorescence of AAV2/8 and AAV2/9 in the mouse retina was obvious, which indicated that the GFP green fluorescence of AAV2/8 and AAV2/9 was high after transfection into the mouse retina. In these two serotypes, GFP green fluorescence of AAV2/8 was mainly concentrated in photoreceptor cells while AAV2/8 was expressed in the whole retina, indicating that AAV2/8 was more specific to photoreceptors. Further experiments on AAV2/8 showed that the GFP green fluorescence of the mouse retina was obvious 4 weeks after injection, indicating that the exogenous gene mediated by AAV2/8 could be stably expressed in vivo. For CMV and CAG promoters, CMV promoter was expressed stronger in retinal pigment epithelium (RPE)cells,while CAG promoter was stronger in photorecepters. In photorecepters, CAG promoter was expressed almost the same as CMV promoter, while CMV promoter was stronger in RPE cells. Conclusion: AAV vectors could express transgene robustly in retinal cells; Among several AAV serotypes, AAV2/2 and AAV2/5 showed weaker GFP fluorescence than AAV2/8 and AAV2/9. AAV2/9 showed expression in each layer of the retina including ganglion cells. AAV2/8 was more specific for photoreceptor; CAG promoters had higher specificity for photoreceptors than CMV promoters.
Shuang HU , Li-ping YANG . Expression pattern of different serotypes of adeno-associated viral vectors in mouse retina[J]. Journal of Peking University(Health Sciences), 2020 , 52(5) : 845 -850 . DOI: 10.19723/j.issn.1671-167X.2020.05.008
| [1] | Grieger JC, Choi VW, Samulski RJ. Production and characterization of adeno-associated viral vectors [J]. Nat Protoc, 2006,1(3):1412-1428. |
| [2] | Berns KI, Nicholas M. AAV: An overview of unanswered questions[J]. Hum Gene Ther, 2017,28(4):308-313. |
| [3] | Alves CH, Wijnholds J. AAV gene augmentation therapy for CRB1-associated retinitis pigmentosa[J]. Methods Mol Biol, 2018,1715:135-151. |
| [4] | Moore NA, Morral N, Ciulla TA. Gene therapy for inherited retinal and optic nerve degenerations[J]. Expert Opin Biol Ther, 2018,18(1):37-49. |
| [5] | Sullivan JA, Stanek LM, Lukason MJ. Rationally designed AAV2 and AAVrh8R capsids provide improved transduction in the retina and brain[J]. Gene Ther, 2018,25(3):205-219. |
| [6] | Ong T, Pennesi ME, Birch DG. Adeno-Associated viral gene therapy for inherited retinal disease[J]. Pharm Res, 2019,36(2):34. |
| [7] | Russell S, Bennett J, Wellman JA. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2017,390(10097):849-860. |
| [8] | Hung SC, Chrysostomou V, Li F. AAV-mediated CRISPR/Cas gene editing of retinal cells in vivo[J]. Invest Ophthalmol Vis Sci, 2016,57(7):3470-3476. |
| [9] | Day TP, Byrne LC, Schaffer DV, et al. Advances in AAV vector development for gene therapy in the retina[J]. Adv Exp Med Biol, 2014,801:687-693. |
| [10] | Allocca M, Mussolino C, Garcia-Hoyos M, et al. Novel Adeno-associated virus serotypes efficiently transduce murine photoreceptors[J]. J Virol, 2007,81(20):11372-11380. |
| [11] | Surace EM, Auricchio A. Versatility of AAV vectors for retinal gene transfer[J]. Vision Res, 2008,48(3):353-359. |
| [12] | Bennett J, Wellman J, Marshall KA. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial[J]. Lancet, 2016,388(10045):661-672. |
| [13] | Carvalho LS, Xu J, Pearson RA, et al. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy[J]. Hum Mol Genet, 2011,20(16):3161-3175. |
| [14] | Flannery JG, Zolotukhin S, Vaquero MI. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus[J]. Proc Natl Acad Sci USA, 1997,94(13):6916-6921. |
| [15] | Young JE, Vogt T, Gross KW, et al. A short, highly active photoreceptor-specific enhancer/promoter region upstream of the human rhodopsin kinase gene[J]. Invest Ophthalmol Vis Sci, 2003,44(9):4076-4085. |
| [16] | Nicoletti A, Kawase K, Thompson DA. Promoter analysis of RPE65, the gene encoding a 61-kDa retinal pigment epithelium-specific protein[J]. Invest Ophthalmol Vis Sci, 1998,39(3):637-644. |
| [17] | Esumi N, Oshima Y, Li Y, et al. Analysis of the VMD2 promoter and implication of E-box binding factors in its regulation[J]. J Biol Chem, 2004,279(18):19064-19073. |
| [18] | Corti M, Liberati C, Smith BK. Safety of intradiaphragmatic deli-very of adeno-associated virus-mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by pompe disease[J]. Hum Gene Ther Clin Dev, 2017,28(4):208-218. |
| [19] | Martier R, Sogorb-Gonzalez M, Stricker-Shaver J. Development of an AAV-based MicroRNA gene therapy to treat Machado-Joseph disease[J]. Mol Ther Methods Clin Dev, 2019,15:343-358. |
/
| 〈 |
|
〉 |