Preliminary evaluation of a virtual reality dental simulation system on training of caries identification ability

  • Si-ming ZHAO ,
  • Xiao-han ZHAO ,
  • Jie ZHANG ,
  • Dang-xiao WANG ,
  • Xiao-yan WANG
Expand
  • 1. Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    2. The State Key Lab of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China

Received date: 2020-09-30

  Online published: 2021-02-07

Supported by

Educational Reform Foundation of Peking University School of Stomatology(2016-PT-05)

Abstract

Objective: To develop a software based on “UniDental” system which is a virtual reality dental simulation system and applied to undergraduate majoring in stomatology to improve the ability of identifying caries.Methods: A software was developed applying to identify virtual dental caries based on UniDental system. In the software, a virtual dental caries model was designed and carious tissue was separated to 3 layers by the depth. The stiffness was the same within each layer which was increasing gradually layer by layer. The roughness was also the same within each layer which was decreasing gradually layer by layer. Sixty-four participants in pre-clinical stage of the class of 2014 majoring in stomatology from Peking University School of Stomatology were trained with the software. During the training, the students should probe on the virtual dental carious tissue layer by layer and feel the difference of vertical stiffness and horizontal roughness of each layer by using a handpiece with realistic force feedback. After training, a questionnaire survey was conducted to evaluate the software including a score of 1-5 for haptic fidelity of stiffness and roughness and their relevant gradient and benefit of improving the ability of identifying caries, choosing the preferred training method. The data were statistically analyzed using Kruskal-Wallis test.Results: The median of subjective evaluation scores of the proposed metrics were all “4”, demonstrating that the software operated above medium fidelity. The stiffness scores of all 3 layers were statistically significant (P<0.05) on the stiffness gradient score. The roughness scores of the 1st and 2nd layers were statistically significant (P<0.05) on the roughness gradient score. The training was helpful to improve the ability of identifying caries (median was 4). The scores of all 3 layers stiffness and relevant gradient were statistically significant (P<0.05) on the score of benefit of improving the ability of identifying caries. 90.4% of the participants preferred the traditional extracted teeth training method.Conclusion: The virtual reality dental simulation system was helpful to improve students’ ability of identifying caries. It couldn’t replace the traditional extracted teeth training method by now, it should be used as a supplement to the traditional training method.

Cite this article

Si-ming ZHAO , Xiao-han ZHAO , Jie ZHANG , Dang-xiao WANG , Xiao-yan WANG . Preliminary evaluation of a virtual reality dental simulation system on training of caries identification ability[J]. Journal of Peking University(Health Sciences), 2021 , 53(1) : 139 -142 . DOI: 10.19723/j.issn.1671-167X.2021.01.021

References

[1] 王嘉德, 高学军. 牙体牙髓病学[M]. 北京: 北京大学医学出版社, 2006: 51-55.
[2] Simodont? dental trainer. (2020-09-25)[2020-09-26]. https://www.moog.com/markets/medical-dental-simulation/haptic-technology-in-the-moog-simodont-dental-trainer.html.
[3] Tse B, Harwin W, Barrow A, et al. Design and development of a haptic dental training system: HapTEL[C]. Berlin Heidelberg: Springer-Verlag, 2010: 101-108.
[4] Dut? M, Amariei CI, Bogdan CM, et al. An overview of virtual and augmented reality in dental education[J]. Oral Health Dent Manag, 2011,10(1):42-49.
[5] Wang DX, Zhang YR, Hou JX, et al. iDental: a paptic-based dental simulator and its preliminary user evaluation[J]. IEEE Trans Haptics, 2012,5(4):332-343.
[6] Wang DX, Zhao SM, Li T, et al. Preliminary evaluation of a virtual reality dental simulation system on drilling operation[J]. Biomed Mater Eng, 2015,26(Suppl 1):S747-S756.
[7] Wang DX, Zhao XH, Shi YJ, et al. Six degree-of-freedom haptic simulation of probing dental caries within a narrow oral cavity[J]. IEEE Trans Haptics, 2016,9(2):279-291.
[8] Chu RH, Zhang YR, Zhang HD, et al. Co-actuation: a method for achieving high stiffness and low inertia for haptic devices[J]. IEEE Trans Haptics, 2020,13(2):312-324.
[9] Banerjee A, Frencken JE, Schwendicke F, et al. Contemporary operative caries management: consensus recommendations on minimally invasive caries removal[J]. Br Dent J, 2017,223(3):215-222.
[10] Ntovas P, Loubrinis N, Maniatakos P, et al. Evaluation of dental explorer and visual inspection for the detection of residual caries among Greek dentists[J]. J Conserv Dent, 2018,21(3):311-318.
Outlines

/