Preparation and in vitro evaluation of fused deposition modeling 3D printed verapa-mil hydrochloride gastric floating formulations

  • Di CHEN ,
  • Xiang-yu XU ,
  • Ming-rui WANG ,
  • Rui LI ,
  • Gen-ao ZANG ,
  • Yue ZHANG ,
  • Hao-nan QIAN ,
  • Guang-rong YAN ,
  • Tian-yuan FAN
Expand
  • 1. Department of Pharmaceutics, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
    2. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

Received date: 2019-05-05

  Online published: 2021-04-21

Abstract

Objective: To explore the feasibility of preparing gastric floating formulations by fused de-position modeling (FDM) 3D printing technology, to evaluate the in vitro properties of the prepared FDM 3D printed gastric floating formulations, and to compare the influence of different external shapes of the formulation with their in vitro properties. Methods: Verapamil hydrochloride and polyvinyl alcohol (PVA) were used as the model drug and the excipient, respectively. The capsule-shaped and hemisphere-shaped gastric floating formulations were then prepared by FDM 3D printing. The infill percentages were 15%, the layer heights were 0.2 mm, and the roof or floor thicknesses were 0.8 mm for both the 3D printed formulations, while the number of shells was 3 and 4 for capsule-shaped and hemisphere-shaped formulation, respectively. Scanning electron microscopy (SEM) was used to observe the morpho-logy of the surface and cross section of the formulations. Gravimetric method was adopted to measure the weights of the formulations. Texture analyzer was employed to evaluate the hardness of the formulations. High performance liquid chromatography method was used to determine the drug contents of the formulations. The in vitro floating and drug release behavior of the formulations were also characterized. Results: SEM showed that the appearance of the FDM 3D printed gastric floating formulations were both intact and free from defects with the filling structure which was consistent with the design. The weight variations of the two formulations were relatively low, indicating a high reproducibility of the 3D printing fabrication. Above 800.0 N of hardness was obtained in two mutually perpendicular directions for the two formulations. The drug contents of the two formulations approached to 100%, showing no drug loss during the 3D printing process. The two formulations floated in vitro without any lag time, and the in vitro floating time of the capsule-shaped and hemisphere-shaped formulation were (3.97±0.41) h and (4.48±0.21) h, respectively. The in vitro release of the two formulations was significantly slower than that of the commercially available immediate-release tablets. Conclusion: The capsule-shaped and hemisphere-shaped verapamil hydrochloride gastric floating formulations were prepared by FDM 3D printing technology successfully. Only the floating time was found to be influenced by the external shape of the 3D printed formulations in this study.

Cite this article

Di CHEN , Xiang-yu XU , Ming-rui WANG , Rui LI , Gen-ao ZANG , Yue ZHANG , Hao-nan QIAN , Guang-rong YAN , Tian-yuan FAN . Preparation and in vitro evaluation of fused deposition modeling 3D printed verapa-mil hydrochloride gastric floating formulations[J]. Journal of Peking University(Health Sciences), 2021 , 53(2) : 348 -354 . DOI: 10.19723/j.issn.1671-167X.2021.02.020

References

[1] Kaushik AY, Tiwari AK, Gaur A. Role of excipients and polyme-ric advancements in preparation of floating drug delivery systems[J]. Int J Pharm Investig, 2015,5(1):1-12.
[2] Pawar VK, Kansal S, Garg G, et al. Gastroretentive dosage forms: A review with special emphasis on floating drug delivery systems[J]. Drug Deliv, 2011,18(2):97-110.
[3] Kotreka UK, Adeyeye MC. Gastroretentive floating drug-delivery systems: A critical review[J]. Crit Rev Ther Drug Carrier Syst, 2011,28(1):47-99.
[4] Sauzet C, Claeys-Bruno M, Nicolas M, et al. An innovative floating gastro retentive dosage system: formulation and in vitro evaluation[J]. Int J Pharm, 2009,378(1/2):23-29.
[5] Sungthongjeen S, Paeratakul O, Limmatvapirat S, et al. Preparation and in vitro evaluation of a multiple-unit floating drug delivery system based on gas formation technique[J]. Int J Pharm, 2006,324(2):136-143.
[6] Alexander S, Juergen S, Roland B. Gastroretentive drug delivery systems[J]. Expert Opinion on Drug Delivery, 2006,3(2):217-233.
[7] Konta AA, Garcia-Pina M, Serrano DR. Personalised 3D printed medicines: Which techniques and polymers are more successful?[J]. Bioengineering (Basel), 2017,4(4):79-96.
[8] Long J, Gholizadeh H, Lu J, et al. Application of fused deposition modelling (FDM) method of 3D printing in drug delivery[J]. Curr Pharm Des, 2017,23(3):433-439.
[9] Palo M, Hollander J, Suominen J, et al. 3D printed drug delivery devices: Perspectives and technical challenges[J]. Expert Rev Med Devices, 2017,14(9):685-696.
[10] Alhnan MA, Okwuosa TC, Sadia M, et al. Emergence of 3D printed dosage forms: Opportunities and challenges[J]. Pharm Res, 2016,33(8):1817-1832.
[11] Sawicki W, Glod J. Preparation of floating pellets with verapamil hydrochloride[J]. Acta Pol Pharm, 2004,61(3):185-190.
[12] Patel A, Modasiya M, Shah D, et al. Development and in vivo floating behavior of verapamil HCl intragastric floating tablets[J]. AAPS PharmSciTech, 2009,10(1):310-315.
[13] 范田园, 张悦. 一种3D打印胃漂浮制剂及其制备方法: 中国,CN106692091A[P]. 2017-05-24.
[14] Srikanth MV, Rao NS, Sunil SA, et al. Statistical design and evaluation of a propranolol HCl gastric floating tablet[J]. Acta Pharmaceutica Sinica B, 2012,2(1):60-69.
[15] Fu J, Yin H, Yu X, et al. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems[J]. Int J Pharm, 2018,549(1/2):370-379.
[16] Goyanes A, Buanz AB, Hatton GB, et al. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets[J]. Eur J Pharm Biopharm, 2015,89:157-162.
[17] Fuenmayor E, Forde M, Healy AV, et al. Comparison of fused-filament fabrication to direct compression and injection molding in the manufacture of oral tablets[J]. Int J Pharm, 2019,558:328-340.
[18] Yang Y, Wang H, Li H, et al. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release[J]. Eur J Pharm Sci, 2018,115:11-18.
[19] Tagami T, Nagata N, Hayashi N, et al. Defined drug release from 3D-printed composite tablets consisting of drug-loaded polyvinylalcohol and a water-soluble or water-insoluble polymer filler[J]. Int J Pharm, 2018,543(1/2):361-367.
[20] Solanki NG, Tahsin M, Shah AV, et al. Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: Screening polymers for drug release, drug-polymer miscibility and printability[J]. J Pharm Sci, 2018,107(1):390-401.
[21] Arafat B, Wojsz M, Isreb A, et al. Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets[J]. Eur J Pharm Sci, 2018,118:191-199.
[22] Kadry H, Al-Hilal TA, Keshavarz A, et al. Multi-purposable filaments of HPMC for 3D printing of medications with tailored drug release and timed-absorption[J]. Int J Pharm, 2018,544(1):285-296.
[23] Sadia M, Arafat B, Ahmed W, et al. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets[J]. J Control Release, 2018,269:355-363.
[24] Tagami T, Fukushige K, Ogawa E, et al. 3D Printing factors important for the fabrication of polyvinylalcohol filament-based tablets[J]. Biol Pharm Bull, 2017,40(3):357-364.
[25] Goyanes A, Robles Martinez P, Buanz A, et al. Effect of geometry on drug release from 3D printed tablets[J]. Int J Pharm, 2015,494(2):657-663.
[26] Zhang J, Yang W, Vo AQ, et al. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation[J]. Carbohydr Polym, 2017,177:49-57.
[27] Goyanes A, Wang J, Buanz A, et al. 3D printing of medicines: Engineering novel oral devices with unique design and drug delease characteristics[J]. Mol Pharm, 2015,12(11):4077-4084.
[28] Lunio R, Sawicki W. Influence of the components of Kollicoat SR film on mechanical properties of floating pellets from the point of view of tableting[J]. Pharmazie, 2008,63(10):731-735.
[29] Yoshida MI, Gomes EC, Soares CD, et al. Thermal analysis applied to verapamil hydrochloride characterization in pharmaceutical formulations[J]. Molecules, 2010,15(4):2439-2452.
[30] Soppimath KS, Kulkarni AR, Aminabhavi TM. Development of hollow microspheres as floating controlled-release systems for car-diovascular drugs: Preparation and release characteristics[J]. Drug Dev Ind Pharm, 2001,27(6):507-515.
[31] Durig T, Fassihi R. Evaluation of floating and sticking extended release delivery systems: An unconventional dissolution test[J]. J Control Release, 2000,67(1):37-44.
[32] Sawicki W, Lunio R, Walentynowicz O, et al. Influence of the type of cellulose on properties of multi-unit target releasing in sto-mach dosage form with verapamil hydrochloride[J]. Acta Pol Pharm, 2007,64(1):81-88.
Outlines

/