Clinical, pathological and genetic characteristics of 8 patients with distal hereditary motor neuropathy

  • Mei-ge LIU ,
  • Pu FANG ,
  • Yan WANG ,
  • Lu CONG ,
  • Yang-yi FAN ,
  • Yuan YUAN ,
  • Yan XU ,
  • Jun ZHANG ,
  • Dao-jun HONG
Expand
  • 1. Department of Neurology, Peking University People’s Hospital, Beijing 100044, China
    2. Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China

Received date: 2019-10-14

  Online published: 2021-10-11

Supported by

National Natural Science Foundation of China(81870996)

Abstract

Objective: Distal hereditary motor neuropathy (dHMN) comprises a heterogeneous group of inherited disorders associated with neurodegeneration of motor nerves and neurons, mainly charac-terized by progressive atrophy and weakness of distal muscle without clinical or electrophysiological sensory abnormalities. To improve the recognition and diagnosis of the disease, we summarized the clinical manifestations, electrophysiological, pathological, and genetic characteristics in eight patients with dHMN. Methods: Eight probands from different families diagnosed with dHMN were recruited in this study between June 2018 and April 2019 at Peking University People’s Hospital. Eight patients underwent complete neurological examination and standard electrophysiological examinations. The clinical criteria were consistent with the patients presenting with a pure motor neuropathy with no sensory changes on electrophysiology. The detailed clinical symptoms, neurophysiological examinations, pathological features and gene mutations were analyzed retrospectively. Genetic testing was performed on the eight patients using targeted next-generation sequencing panel for inherited neuromuscular disorder and was combined with segregation analysis. Results: The age of onset ranged between 11 and 64 years (median 39.5 years) in our dHMN patients. All the cases showed a slowly progressive disease course, mainly characterized by distal limb muscle weakness and atrophy. The motor nerve conduction revealed decreased compound muscle action potential amplitude and velocity, while the sensory nerve conduction velocities and action potentials were not affected. Needle electromyography indicated neurogenic chronic denervation in all patients. Muscle biopsy performed in two patients demonstrated neurogenic skeletal muscle damage. Sural nerve biopsy was performed in one patient, Semithin sections shows relatively normal density and structure of large myelinated fibers, except very few fibers with thin myelin sheaths, which suggested very mild sensory nerve involvement. Eight different genes known to be associated with dHMN were identified in the patients by next-generation sequencing, pathogenic dHMN mutations were identified in three genes, and the detection rate of confirmed genetic diagnosis of dHMN was 37.5% (3/8). Whereas five variants of uncertain significance (VUS) were identified, among which two novel variants co-segregated the phenotype. Conclusion: dHMN is a group of inherited peripheral neuropathies with great clinical and genetic heterogeneity. Next-generation sequencing is widely used to discover pathogenic genes in patients with dHMN, but more than half of the patients still remain genetically unknown.

Cite this article

Mei-ge LIU , Pu FANG , Yan WANG , Lu CONG , Yang-yi FAN , Yuan YUAN , Yan XU , Jun ZHANG , Dao-jun HONG . Clinical, pathological and genetic characteristics of 8 patients with distal hereditary motor neuropathy[J]. Journal of Peking University(Health Sciences), 2021 , 53(5) : 957 -963 . DOI: 10.19723/j.issn.1671-167X.2021.05.025

References

[1] Garg N, Park SB, Vucic S, et al. Differentiating lower motor neuron syndrome [J]. J Neurol Neurosurg Psychiatry, 2017, 88(6):474-483.
[2] Frasquet M, Rojas-García R, Argente-Escrig H, et al. Distal hereditary motor neuropathies: mutation spectrum and genotype-phenotype correlation [J]. Eur J Neurol, 2021, 28(4):1334-1343.
[3] Bansagi B, Griffin H, Whittaker RG, et al. Genetic heterogeneity of motor neuropathies [J]. Neurology, 2017, 88(13):1226-1234.
[4] Bacquet J, Stojkovic T, Boyer A, et al. Molecular diagnosis of inherited peripheral neuropathies by targeted next-generation sequencing: molecular spectrum delineation [J]. BMJ Open, 2018, 8(10):e21632.
[5] Echaniz-Laguna A, Geuens T, Petiot P, et al. Axonal neuropathies due to mutations in small heat shock proteins: clinical, genetic, and functional insights into novel mutations [J]. Hum Mutat, 2017, 38(5):556-568.
[6] Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology [J]. Genet Med, 2015, 17(5):405-424.
[7] Tanabe H, Higuchi Y, Yuan JH, et al. Clinical and genetic features of charcot-marie-tooth disease 2F and hereditary motor neuropathy 2B in Japan [J]. J Peripher Nerv Syst, 2018, 23(1):40-48.
[8] Windpassinger C, Auer-Grumbach M, Irobi J, et al. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome [J]. Nat Genet, 2004, 36(3):271-276.
[9] Novarino G, Fenstermaker AG, Zaki MS, et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders [J]. Science, 2014, 343(6170):506-511.
[10] Xie Y, Lin Z, Pakhrin PS, et al. Genetic and clinical features in 24 Chinese distal hereditary motor neuropathy families [J/OL]. Front Neurol, 2020, 11:603003(2020-12-14)[2020-12-15]. https://pubmed-ncbi-nlm-nih-gov-443.webvpn.bjmu.edu.cn/33 3810781/ .
[11] 张付峰, 卢晓琴, 严新翔, 等. 远端型遗传性运动神经病的临床特征分析 [J]. 第二军医大学学报, 2009, 30(1):57-60.
[12] De Jonghe P, Auer-Grumbach M, Irobi J, et al. Autosomal dominant juvenile amyotrophic lateral sclerosis and distal hereditary motor neuronopathy with pyramidal tract signs: synonyms for the same disorder [J]. Brain, 2002, 125(Pt 6):1320-1325.
[13] Motley WW, Griffin LB, Mademan I, et al. A novel AARS mutation in a family with dominant myeloneuropathy [J]. Neurology, 2015, 84(20):2040-2047.
[14] Luigetti M, Fabrizi GM, Madia F, et al. Seipin S90L mutation in an Italian family with CMT2/dHMN and pyramidal signs [J]. Muscle Nerve, 2010, 42(3):448-451.
[15] Beecroft SJ, McLean CA, Delatycki MB, et al. Expanding the phenotypic spectrum associated with mutations of DYNC1H1 [J]. Neuromuscul Disord, 2017, 27(7):607-615.
[16] Dierick I, Baets J, Irobi J, et al. Relative contribution of mutations in genes for autosomal dominant distal hereditary motor neuropathies: a genotype-phenotype correlation study [J]. Brain, 2008, 131(Pt 5):1217-1227.
[17] Rossor AM, Evans MR, Reilly MM. A practical approach to the genetic neuropathies [J]. Pract Neurol, 2015, 15(3):187-198.
[18] Liu X, Duan X, Zhang Y, Sun A, et al. Molecular analysis and clinical diversity of distal hereditary motor neuropathy [J]. Eur J Neurol, 2020, 27:1319-1326.
[19] Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies [J]. Brain, 2020, 143(Pt 12):3540-3563.
Outlines

/