Journal of Peking University(Health Sciences) >
Comparison of initial periodontal therapy and its correlation with white blood cell level in periodontitis patients with or without diabetes mellitus
Received date: 2021-10-10
Online published: 2022-02-21
Objective: To compare the clinical efficacy of initial periodontal therapy in periodontitis patients with or without type 2 diabetes mellitus and its correlation with white blood cell counts. Methods: In this study, 32 chronic periodontitis patients without systemic disease (CP group) and 27 chronic periodontitis patients with type 2 diabetes mellitus (CP+DM group) were enrolled. At admission, all the patients went through periodontal examination and fasting blood examination(baseline). Probing depth (PD), attachment loss (AL), bleeding index (BI), plaque index (PLI), white blood cells (WBC) counts and fasting blood glucose (FBG) were recorded respectively, while hemoglobin A1c (HbA1c) was recorded only in CP+DM group. After that, initial periodontal therapy was performed. All the tests were repeated 3 and 6 months after treatment. The changes of periodontal clinical indexes and WBC levels were compared between the two groups before and after treatment, and the correlation between WBC and periodontal clinical indexes and glucose metabolism indexes were analyzed by generalized linear mixed model. Results: At baseline, the periodontal inflammation and destruction were similar in CP and CP+DM group, but the WBC level was significantly higher in CP+DM groups [(6.01±1.26)×109/L vs. (7.14±1.99)×10 9/L, P=0.01]. After 3 and 6 months of initial periodontal therapy, the mean PD, AL, BI, and PLI in CP+DM and CP groups were significantly lower than the baseline, and the PD in CP+DM group was further decreased by 6 months compared with 3 months [(3.33±0.62) mm vs. (3.61±0.60) mm, P<0.05]. However, none of these periodontal indexes showed significant difference between the two groups by 3 or 6 months. In CP+DM group, HbA1c at 3 months and 6 months were significantly lower than the baseline [(7.09±0.79)% vs. (7.64±1.16)%, P<0.05; (7.06±0.78)% vs. (7.64±1.16)%, P<0.05], and FBG was significantly lower than the baseline by 6 months [(7.35±1.14) mmol/L vs. (8.40±1.43) mmol/L, P<0.05]. The WBC level in CP group was significantly lower than the baseline level by 3 months [(5.35±1.37)×10 9/L vs. (6.01±1.26)×10 9/L, P<0.05], while that in CP+DM group was significantly lower than the baseline level by 6 months [(6.00±1.37)×10 9/L vs. (7.14±1.99)×10 9/L, P<0.05]. The analysis of genera-lized linear mixed model showed that WBC level was significantly positively correlated with PD and FBG (P<0.05). Conclusion: Initial periodontal therapy can effectively improve the periodontal clinical status of patients with or without type 2 diabetes mellitus, and have benefits on glycemic control in diabetic patients. However, the response of periodontal indexes and WBC level to initial therapy were relatively delayed in diabetic patients. WBC plays an important role in the correlation between diabetes mellitus and periodontitis.
Key words: Periodontitis; Diabetes mellitus; type 2; Dental scaling; Periodontal index
Xin-ran XU , Peng-cheng HUO , Lu HE , Huan-xin MENG , Yun-xuan ZHU , Dong-si-qi JIN . Comparison of initial periodontal therapy and its correlation with white blood cell level in periodontitis patients with or without diabetes mellitus[J]. Journal of Peking University(Health Sciences), 2022 , 54(1) : 48 -53 . DOI: 10.19723/j.issn.1671-167X.2022.01.008
| [1] | Graves DT, Ding Z, Yang Y. The impact of diabetes on periodontal diseases[J]. Periodontol 2000, 2020, 82(1):214-224. |
| [2] | Genco RJ, Graziani F, Hasturk H. Effects of periodontal disease on glycemic control, complications, and incidence of diabetes mellitus[J]. Periodontol 2000, 2020, 83(1):59-65. |
| [3] | Costa FO, Cota LM, Lages EP, et al. Progression of periodontitis and tooth loss associated with glycemic control in individuals undergoing periodontal maintenance therapy: A 5-year follow-up study[J]. J Periodontol, 2013, 84(5):595-605. |
| [4] | Mirza RE, Fang MM, Weinheimer-Haus EM, et al. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice[J]. Diabetes, 2013, 63(3):1103-1114. |
| [5] | da Cruz GA, de Toledo S, Sallum EA, et al. Clinical and laboratory evaluations of non-surgical periodontal treatment in subjects with diabetes mellitus[J]. J Periodontol, 2008, 79(7):1150-1157. |
| [6] | Correa F, Goncalves D, Figueredo C, et al. The short-term effectiveness of non-surgical treatment in reducing levels of interleukin-1beta and proteases in gingival crevicular fluid from patients with type 2 diabetes mellitus and chronic periodontitis[J]. J Periodontol, 2008, 79(11):2143-2150. |
| [7] | Goncalves D, Correa F, Khalil NM, et al. The effect of non-surgical periodontal therapy on peroxidase activity in diabetic patients: A case-control pilot study[J]. J Clin Periodontol, 2010, 35(9):799-806. |
| [8] | Vozarova B, Weyer C, Lindsay RS, et al. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes[J]. Diabetes, 2002, 51(2):455-461. |
| [9] | Zhang H, Zhen Y, Zhang W, et al. White blood cell subtypes and risk of type 2 diabetes[J]. J Diabetes Complications, 2016, 31(1):31-37. |
| [10] | NibaliI L, D’Aiuto F, Griffiths G, et al. Severe periodontitis is associated with systemic inflammation and a dysmetabolic status: A case-control study[J]. J Clin Periodontol, 2010, 34(11):931-937. |
| [11] | Wang X, Meng H, Xu L, et al. Mean platelet volume as an inflammatory marker in patients with severe periodontitis[J]. Platelets, 2015, 26(1):67-71. |
| [12] | Sonoki K, Nakashima S, Takata Y, et al. Decreased lipid peroxidation following periodontal therapy in type 2 diabetic patients[J]. J Periodontol, 2006, 77(11):1907-1913. |
| [13] | Navarro-Sanchez AB, Faria-Almeida R, Bascones-Martinez A. Effect of non-surgical periodontal therapy on clinical and immunological response and glycaemic control in type 2 diabetic patients with moderate periodontitis[J]. J Clin Periodontol, 2007, 34(10):835-843. |
| [14] | 徐菁玲, 孟焕新, 李峥, 等. 牙周基础治疗对2型糖尿病伴慢性牙周炎患者血糖代谢指标及血清生化指标的影响[J]. 北京大学学报(医学版), 2013, 45(1):27-32. |
| [15] | Suvan J, Harrington Z, Petrie A, et al. Obesity as predictive factor of periodontal therapy clinical outcomes: A cohort study[J]. J Clin Periodontol, 2020, 47(5):594-601. |
| [16] | Retamal I, Hernandez R, Velarde V, et al. Diabetes alters the involvement of myofibroblasts during periodontal wound healing[J]. Oral Dis, 2020, 26(5):1062-1071. |
| [17] | Trombelli L, Simonelli A, Franceschetti G, et al. What periodontal recall interval is supported by evidence?[J]. Periodontol 2000, 2020, 84(1):124-133. |
| [18] | Mauri-Obradors E, Merlos A, Estrugo-Devesa A, et al. Benefits of non-surgical periodontal treatment in patients with type 2 diabetes mellitus and chronic periodontitis: A randomized controlled trial[J]. J Clin Periodontol, 2018, 45(3):345-353. |
| [19] | Shiny A, Bibin YS, Shanthirani CS, et al. Association of neutrophil-lymphocyte ratio with glucose intolerance: An indicator of systemic inflammation in patients with type 2 diabetes[J]. Diabetes Technol Ther, 2014, 16(8):524-530. |
| [20] | Cersosimo E, Defronzo RA. Insulin resistance and endothelial dysfunction: The road map to cardiovascular diseases[J]. Diabetes-Metab Res Rev, 2010, 22(6):423-436. |
| [21] | Tong PC, Lee KF, So WY, et al. White blood cell count is associated with macro- and microvascular complications in Chinese patients with type 2 diabetes[J]. Diabetes Care, 2004, 27(1):216-222. |
| [22] | Gao H, Xu J, He L, et al. Calprotectin levels in gingival crevicular fluid and serum of patients with chronic periodontitis and type 2 diabetes mellitus before and after initial periodontal therapy[J]. J Periodont Res, 2021, 56(1):121-130. |
| [23] | Gao H, Hou J, Meng H, et al. Proinflammatory effects and mecha-nisms of calprotectin on human gingival fibroblasts[J]. J Periodont Res, 2017, 52(6):975-983. |
/
| 〈 |
|
〉 |