Journal of Peking University(Health Sciences) >
A cone-beam computed tomography evaluation of three-dimensional changes of circummaxillary sutures following maxillary protraction with alternate rapid palatal expansions and constrictions
Received date: 2021-11-09
Online published: 2022-04-13
Supported by
National Program for Multidisciplinary Cooperative Treatment on Major Diseases(PKUSSNMP-202013)
Objective: To assess three-dimensional (3D) changes of circummaxillary sutures following maxillary protraction with alternate rapid palatal expansions and constrictions (RPE/C) facemask protocol in maxillary retrusive children, and to investigate the relationship between the changes of circum-maxillary sutures and zygomaticomaxillary suture (ZMS) maturation, and to explore the factors of maxilla forward movement with RPE/C and facemask. Methods: In the study (clinical trial registration No: ChiCTR2000034909), 36 maxillary retrusive patients were recruited and block randomized to either the rapid palatal expansion (RPE) group or the RPE/C group. Patients aged 7 to 13 years, Class Ⅲ malocclusion, anterior crossbite, ANB less than 0°, Wits appraisal less than -2 mm, and A-Np less than 0 mm were included in the study. The RPE group received rapid palatal expansion, whereas the RPE/C group received alternate rapid palatal expansions and constrictions, and both with facemask protraction. Head orientations of cone-beam computed tomography (CBCT) images were implemented by Dolphin 11.7. 3D measurements of circummaxillary sutures on CBCT images were evaluated using Mimics 10.01 before (T0) and after treatment (T1). The changes were analyzed with independent t test, two-way ANOVA, Pearson correlation and regression analysis. Results: Two subjects in the RPE/C group were lost to follow-up. A total of 34 patients reached the completion criteria and were analyzed. Compared with the RPE group, sagittal changes of circummaxillary sutures were significantly increased in the RPE/C group with 1.21 mm advancement of zygomaticotemporal suture, 2.20 mm of ZMS, 1.43 mm of zygoma-ticofrontal suture (P<0.05, respectively). Except for the zygomaticotemporal suture, the rest forward sagittal changes of other circummaxillary sutures showed no major difference in terms of the ZMS maturation. The Spearman’s correlation in RPE/C indicated a strong positive correlation of sagittal changes between ZMS and point A (P<0.01) with a regression analysis R 2=42.5%. Conclusion: RPE/C might be more effective on the treatment of maxillary retrusive children. As one of the major mechanical loading sutures during orthopedic therapy, ZMS showed a strong positive correlation with point A on sagittal changes.
Wei-tao LIU , Yi-ran WANG , Xue-dong WANG , Yan-heng ZHOU . A cone-beam computed tomography evaluation of three-dimensional changes of circummaxillary sutures following maxillary protraction with alternate rapid palatal expansions and constrictions[J]. Journal of Peking University(Health Sciences), 2022 , 54(2) : 346 -355 . DOI: 10.19723/j.issn.1671-167X.2022.02.024
| [1] | 任超超, 白玉兴. 上颌前方牵引的疗效及其长期稳定性[J]. 中华口腔医学杂志, 2018, 53(10):649-652. |
| [2] | Wells AP, Sarver DM, Proffit WR. Long-term efficacy of reverse pull headgear therapy[J]. Angle Orthod, 2006, 76(6):915-922. |
| [3] | Liou EJ, Tsai WC. A new protocol for maxillary protraction in cleft patients: Repetitive weekly protocol of alternate rapid maxillary expansions and constrictions[J]. Cleft Palate Craniofac J, 2005, 42(2):121-127. |
| [4] | Liu Y, Hou R, Jin H, et al. Relative effectiveness of facemask therapy with alternate maxillary expansion and constriction in the early treatment of class Ⅲ malocclusion[J]. Am J Orthod Dentofacial Orthop, 2021, 159(3):321-332. |
| [5] | Almuzian M, McConnell E, Darendeliler MA, et al. The effectiveness of alternating rapid maxillary expansion and constriction combined with maxillary protraction in the treatment of patients with a class Ⅲ malocclusion: A systematic review and meta-analysis[J]. J Orthod, 2018, 45(4):250-259. |
| [6] | 王怡然, 周彦恒, 王雪东, 等. 上颌反复扩缩前方牵引三维变化的锥形束CT分析[J]. 北京大学学报(医学版), 2018, 50(4):685-693. |
| [7] | Liu W, Zhou Y, Wang X, et al. Effect of maxillary protraction with alternating rapid palatal expansion and constriction vs expansion alone in maxillary retrusive patients: A single-center, randomized controlled trial[J]. Am J Orthod Dentofacial Orthop, 2015, 148(4):641-651. |
| [8] | Parayaruthottam P, Antony V, Francis PG, et al. A retrospective evaluation of conventional rapid maxillary expansion versus alternate rapid maxillary expansion and constriction protocol combined with protraction headgear in the management of developing skeletal class Ⅲ malocclusion[J]. J Int Soc Prev Community Dent, 2018, 8(4):320-326. |
| [9] | 熊再道, 柯杰, 赵桂芝, 等. 两种扩弓方式对骨性Ⅲ类错牙合前方牵引效果的影响[J]. 中华口腔医学研究杂志: 电子版, 2017, 11(3):169-173. |
| [10] | Buyukcavus MH, Kale B, Aydemir B. Comparison of treatment effects of different maxillary protraction methods in skeletal class Ⅲ patients[J]. Orthod Craniofac Res, 2020, 23(4):445-454. |
| [11] | Zhao T, Hua F, He H. Alternate rapid maxillary expansion and constriction (Alt-RAMEC) may be more effective than rapid maxillary expansion alone for protraction facial mask treatment[J]. J Evid Based Dent Pract, 2020, 20(2):101408. |
| [12] | Wu Z, Zhang X, Li Z, et al. A Bayesian network meta-analysis of orthopaedic treatment in class Ⅲ malocclusion: Maxillary protraction with skeletal anchorage or a rapid maxillary expander[J]. Orthod Craniofac Res, 2020, 23(1):1-15. |
| [13] | Wang YC, Chang PM, Liou EJ. Opening of circumaxillary sutures by alternate rapid maxillary expansions and constrictions[J]. Angle Orthod, 2009, 79(2):230-234. |
| [14] | Nanda R, Hickory W. Zygomaticomaxillary suture adaptations incident to anteriorly-directed forces in rhesus monkeys[J]. Angle Orthod, 1984, 54(3):199-210. |
| [15] | Zhao N, Xu Y, Chen Y, et al. Effects of class Ⅲ magnetic orthopedic forces on the craniofacial sutures of rhesus monkey[J]. Am J Orthod Dentofacial Orthop, 2008, 133(3):401-409. |
| [16] | Angelieri F, Franchi L, Cevidanes LHS, et al. Zygomaticomaxillary suture maturation: A predictor of maxillary protraction? Part Ⅰ: A classification method[J]. Orthod Craniofac Res, 2017, 20(2):85-94. |
| [17] | Angelieri F, Ruellas AC, Yatabe MS, et al. Zygomaticomaxillary suture maturation: Part Ⅱ: The influence of sutural maturation on the response to maxillary protraction[J]. Orthod Craniofac Res, 2017, 20(3):152-163. |
| [18] | Chung CH, Hufham DC. A corrected cephalometric tracing technique for diagnosis of anterior crossbite with functional shift[J]. J Clin Orthod, 2001, 35(8):500-504. |
| [19] | Yilmaz BS, Kucukkeles N. Skeletal, soft tissue, and airway changes following the alternate maxillary expansions and constrictions protocol[J]. Angle Orthod, 2014, 84(5):868-877. |
| [20] | Gateno J, Xia JJ, Teichgraeber JF. New 3-dimensional cephalometric analysis for orthognathic surgery[J]. J Oral Maxillofac Surg, 2011, 69(3):606-622. |
| [21] | Kanomi R, Deguchi T, Kakuno E, et al. CBCT of skeletal changes following rapid maxillary expansion to increase arch-length with a development-dependent bonded or banded appliance[J]. Angle Orthod, 2013, 83(5):851-857. |
| [22] | Herring SW. Mechanical influences on suture development and patency[J]. Front Oral Biol, 2008, 12:41-56. |
| [23] | 李鑫, 李江, 黄诗言, 等. 五种腭中缝扩展技术的临床应用[J]. 临床口腔医学杂志, 2019, 35(12):757-759. |
| [24] | Almuzian M, Almukhtar A, Ulhaq A, et al. 3D effects of a bone-anchored intra-oral protraction in treating class Ⅲ growing patient: A pilot study[J]. Prog Orthod, 2019, 20(1):37. |
| [25] | Liang S, Wang F, Chang Q, et al. Three-dimensional comparative evaluation of customized bone-anchored vs tooth-borne maxillary protraction in patients with skeletal class Ⅲ malocclusion[J]. Am J Orthod Dentofacial Orthop, 2021, 160(3):374-384. |
| [26] | Miranda F, Cunha Bastos JCD Magno Dos Santos A, et al. Dentoskeletal comparison of miniscrew-anchored maxillary protraction with hybrid and conventional hyrax expanders: A randomized clinical trial[J]. Am J Orthod Dentofacial Orthop, 2021, 160(6):774-783. |
| [27] | Scarfe WC, Azevedo B, Toghyani S, et al. Cone beam computed tomographic imaging in orthodontics[J]. Aust Dent J, 2017, 62(Suppl 1):33-50. |
| [28] | 高璐, 谷岩. 中国1076名儿童及青年腭中缝影像学分期与其颈椎骨龄分期的相关性研究[J]. 中华口腔医学杂志, 2021, 56(3):251-255. |
| [29] | Onem Ozbilen E, Yilmaz HN, Kucukkeles N. Comparison of the effects of rapid maxillary expansion and alternate rapid maxillary expansion and constriction protocols followed by facemask therapy[J]. Korean J Orthod, 2019, 49(1):49-58. |
| [30] | Fischer B, Masucci C, Ruellas A, et al. Three-dimensional evaluation of the maxillary effects of two orthopaedic protocols for the treatment of class Ⅲ malocclusion: A prospective study[J]. Orthod Craniofac Res, 2018, 21(4):248-257. |
| [31] | Canturk BH, Celikoglu M. Comparison of the effects of face mask treatment started simultaneously and after the completion of the alternate rapid maxillary expansion and constriction procedure[J]. Angle Orthod, 2015, 85(2):284-291. |
| [32] | Özbilen EÖ, Yılmaz HN, Acar YB. Does Alt-RAMEC protocol and facemask treatment affect dentoalveolar structures?[J]. Angle Orthod, 2021, 91(5):626-633. |
| [33] | Gautam P, Valiathan A, Adhikari R. Maxillary protraction with and without maxillary expansion: A finite element analysis of sutural stresses[J]. Am J Orthod Dentofacial Orthop, 2009, 136(3):361-366. |
| [34] | Han X, Lu H, Li S, et al. Cell morphologic changes and PCNA expression within craniofacial sutures during monkey class Ⅲ treatment[J]. Orthod Craniofac Res, 2016, 19(4):181-189. |
/
| 〈 |
|
〉 |