Journal of Peking University(Health Sciences) >
Effects of 4′-O-methylochnaflavone on endothelial dysfunction induced by palmitic acid in rat cavernous endothelial cells
Received date: 2022-03-25
Online published: 2022-08-11
Supported by
the National Natural Science Foundation of China(81971379);the Wuxi "Taihu Talents Program" Medical and Health High-Level Talents Project
Objective: To investigate the effect of biflavonoid 4′-O-methylochnaflavone (MF) on palmitic acid-induced endothelial dysfunction in rat cavernous endothelial cells (RCECs). Methods: The isolated RCECs were commercially available and randomly divided into four groups: normal+BSA group (NC group), palmitic acid (PA) group, MF group, and icariside Ⅱ (ICA Ⅱ) group. The protein expression levels of protein kinase B (PKB/AKT) and endothelial nitric oxide synthase (eNOS) in each group were evaluated via Western blotting. The differences in the intracellular nitric oxide of RCECs treated by MF or ICA Ⅱ were detected by DAF-FM DA that served as a nitric oxide fluorescent probe. Effects of MF and ICA Ⅱ on cell proliferation of PA-stimulated RCECs were determined via CCK-8 assay. Results: The content of nitric oxide in RCECs was significantly increased after the treatment of MF and ICA Ⅱ in comparison with the NC group (P < 0.05). Moreover, compared with ICA Ⅱ group, MF demonstrated a more obvious effect in promoting nitric oxide production (P < 0.05). Compared with the NC group, the expression levels of eNOS and AKT in the PA group were significantly decreased, indicating that a model for simulating the high-fat environment in vitro was successfully constructed (P < 0.05). Meanwhile, the intervention of MF and ICA Ⅱ could effectively increase the expression of eNOS and AKT, suggesting that MF and ICA Ⅱ could promote the recovery of endothelial dysfunction caused by high levels of free fatty acids (P < 0.05). The results of CCK-8 assays showed that PA could significantly reduce the proli-feration ability of RCECs (P < 0.05). Furthermore, the decreased cell viability induced by PA was significantly elevated by treatment with ICA Ⅱ and MF (P < 0.05). Conclusion: In RCECs, MF and ICA Ⅱ could effectively increase the content of nitric oxide. The down-regulation of the expression of proteins associated with the AKT/eNOS pathway after PA treatment revealed that this pathway was involved in the development of endothelial dysfunction, which could be effectively reversed by MF and ICA Ⅱ. In addition, the cell proliferation ability was significantly decreased following PA treatment, but MF and ICA Ⅱ could restore the above changes. Overall, biflavonoid MF has an obvious repairing effect on PA-stimulated endothelial dysfunction.
Yang-yang GU , Xiao-hui TAN , Wen-peng SONG , Dong FANG , Wei-dong SONG , Yi-ming YUAN , Ning-han FENG , Rui-li GUAN . Effects of 4′-O-methylochnaflavone on endothelial dysfunction induced by palmitic acid in rat cavernous endothelial cells[J]. Journal of Peking University(Health Sciences), 2022 , 54(4) : 599 -604 . DOI: 10.19723/j.issn.1671-167X.2022.04.004
| 1 | Bakr AM , El-Sakka AI . Erectile dysfunction among patients and health care providers during COVID-19 pandemic: A systematic review[J]. Int J Impot Res, 2022, 34 (2): 145- 151. |
| 2 | Yafi FA , Jenkins L , Albersen M , et al. Erectile dysfunction[J]. Nat Rev Dis Primers, 2016, 2, 16003. |
| 3 | Ghosh A , Gao L , Thakur A , et al. Role of free fatty acids in endothelial dysfunction[J]. J Biomed Sci, 2017, 24 (1): 50. |
| 4 | Zhao Y , Vanhoutte PM , Leung SWS . Vascular nitric oxide: Beyond eNOS[J]. J Pharmacol Sci, 2015, 129 (2): 83- 94. |
| 5 | Boden G . Obesity and free fatty acids[J]. Endocrin Metab Clin, 2008, 37 (3): 635- 646. |
| 6 | Egan BM , Greene EL , Goodfriend TL . Nonesterified fatty acids in blood pressure control and cardiovascular complications[J]. Curr Hypertens Rep, 2001, 3 (2): 107- 116. |
| 7 | Haus JM , Solomon TPJ , Marchetti CM , et al. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance[J]. J Clin Endocr Metab, 2010, 95 (1): 323- 327. |
| 8 | Durrant JR , Seals DR , Connell ML , et al. Voluntary wheel running restores endothelial function in conduit arteries of old mice: Direct evidence for reduced oxidative stress, increased superoxide dismutase activity and down-regulation of NADPH oxidase[J]. J Physiol, 2009, 587 (13): 3271- 3285. |
| 9 | Khan MJ , Rizwan Alam M , Waldeck-Weiermair M , et al. Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells[J]. J Biol Chem, 2012, 287 (25): 21110- 21120. |
| 10 | Lee C , Lee S , Ou H , et al. Eicosapentaenoic acid protects against palmitic acid-induced endothelial dysfunction via activation of the AMPK/eNOS pathway[J]. Int J Mol Sci, 2014, 15 (6): 10334- 10349. |
| 11 | Wang L , Xu Y , Li H , et al. Antioxidant icariside Ⅱ combined with insulin restores erectile function in streptozotocin-induced type 1 diabetic rats[J]. J Cell Mol Med, 2015, 19 (5): 960- 969. |
| 12 | Gu S J , Li M , Yuan YM , et al. A novel flavonoid derivative of icariside Ⅱ improves erectile dysfunction in a rat model of caver-nous nerve injury[J]. Andrology, 2021, 9 (6): 1893- 1901. |
| 13 | Godo S , Shimokawa H . Endothelial functions[J]. Arterioscler Thromb Vasc Biol, 2017, 37 (9): e108- e114. |
| 14 | Chlopicki S . Perspectives in pharmacology of endothelium: From bench to bedside[J]. Pharmacol Rep, 2015, 67 (4): vi- ix. |
| 15 | Everaert BR , van Craenenbroeck EM , Hoymans VY , et al. Current perspective of pathophysiological and interventional effects on endothelial progenitor cell biology: Focus on Pi3K/AKT/eNOS pathway[J]. Int J Cardiol, 2010, 144 (3): 350- 366. |
| 16 | Morris G , Puri BK , Olive L , et al. Endothelial dysfunction in neuroprogressive disorders-causes and suggested treatments[J]. BMC Med, 2020, 18 (1): 305. |
| 17 | Mu H , Liu H , Zhang J , et al. Ursolic acid prevents doxorubicin-induced cardiac toxicity in mice through eNOS activation and inhibition of eNOS uncoupling[J]. J Cell Mol Med, 2019, 23 (3): 2174- 2183. |
| 18 | Schmitt CA , Dirsch VM . Modulation of endothelial nitric oxide by plant-derived products[J]. Nitric Oxide, 2009, 21 (2): 77- 91. |
| 19 | García-Prieto CF , Hernández-Nu?o F , Rio DD , et al. High-fat diet induces endothelial dysfunction through a down-regulation of the endothelial AMPK-PI3K-Akt-eNOS pathway[J]. Mol Nutr Food Res, 2015, 59 (3): 520- 532. |
| 20 | Vadivel V , Kunyanga CN , Biesalski HK . Health benefits of nut consumption with special reference to body weight control[J]. Nutrition, 2012, 28 (11/12): 1089- 1097. |
| 21 | Brookheart RT , Michel CI , Schaffer JE . As a matter of fat[J]. Cell Metab, 2009, 10 (1): 9- 12. |
| 22 | Wang M , Gao H , Li W , et al. Icariin and its metabolites regulate lipid metabolism: From effects to molecular mechanisms[J]. Biomed Pharmacother, 2020, 131, 110675. |
| 23 | Li H , Xu Y , Guan R , et al. Icariside Ⅱ prevents high-glucose-induced injury on human cavernous endothelial cells through Akt-eNOS signaling pathway[J]. Andrology, 2015, 3 (2): 408- 416. |
| 24 | Lee S J , Choi JH , Son KH , et al. Suppression of mouse lymphocyte proliferation in vitro by naturally-occurring biflavonoids[J]. Life Sci, 1995, 57 (6): 551- 558. |
| 25 | Li L , Ma L , Hu Y , et al. Natural biflavones are potent inhibitors against SARS-CoV-2 papain-like protease[J]. Phytochemistry, 2022, 193, 112984. |
/
| 〈 |
|
〉 |