Analysis of clinicopathological and molecular abnormalities of angioimmunoblastic T-cell lymphoma

  • Yun-fei SHI ,
  • Hao-jie WANG ,
  • Wei-ping LIU ,
  • Lan MI ,
  • Meng-ping LONG ,
  • Yan-fei LIU ,
  • Yu-mei LAI ,
  • Li-xin ZHOU ,
  • Xin-ting DIAO ,
  • Xiang-hong LI
Expand
  • 1. Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
    2. Central Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
    3. Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China

Received date: 2022-09-22

  Online published: 2023-06-12

Abstract

Objective: To analyze the clinicopathological features, molecular changes and prognostic factors in angioimmunoblastic T-cell lymphoma (AITL). Methods: Sixty-one cases AITL diagnosed by Department of Pathology of Peking University Cancer Hospital were collected with their clinical data. Morphologically, they were classified as typeⅠ[lymphoid tissue reactive hyperplasia (LRH) like]; typeⅡ[marginal zone lymphoma(MZL)like] and type Ⅲ [peripheral T-cell lymphoma, not specified (PTCL-NOS) like]. Immunohistochemical staining was used to evaluate the presence of follicular helper T-cell (TFH) phenotype, proliferation of extra germinal center (GC) follicular dendritic cells (FDCs), presence of Hodgkin and Reed-Sternberg (HRS)-like cells and large B transformation. The density of Epstein-Barr virus (EBV) + cells was counted with slides stained by Epstein-Barr virus encoded RNA (EBER) in situ hybridization on high power field (HPF). T-cell receptor / immunoglobulin gene (TCR/IG) clonality and targeted exome sequencing (TES) test were performed when necessary. SPSS 22.0 software was used for statistical analysis. Results: Morphological subtype (%): 11.4% (7/61) cases were classified as type Ⅰ; 50.8% (31/61) as type Ⅱ; 37.8% (23/61) as type Ⅲ. 83.6% (51/61) cases showed classical TFH immunophenotype. With variable extra-GC FDC meshwork proliferation (median 20.0%); 23.0% (14/61) had HRS-like cells; 11.5% (7/61) with large B transformation. 42.6% (26/61) of cases with high counts of EBV. 57.9% (11/19) TCR+/IG-, 26.3% (5/19) TCR+/IG+, 10.5% (2/19) were TCR/IG, and 5.3% (1/19) TCR/IG+. Mutation frequencies by TES were 66.7% (20/30) for RHOA, 23.3% (7/30) for IDH2 mutation, 80.0% (24/30) for TET2 mutation, and 33.3% (10/30) DNMT3A mutation. Integrated analysis divided into four groups: (1) IDH2 and RHOA co-mutation group (7 cases): 6 cases were type Ⅱ, 1 case was type Ⅲ; all with typical TFH phenotype; HRS-like cells and large B transformation were not found; (2) RHOA single mutation group (13 cases): 1 case was type Ⅰ, 6 cases were type Ⅱ, 6 cases were type Ⅲ; 5 cases without typical TFH phenotype; 6 cases had HRS-like cells, and 2 cases with large B transformation. Atypically, 1 case showed TCR/IG, 1 case with TCR/IG+, and 1 case with TCR+/IG+; (3) TET2 and/or DNMT3A mutation alone group (7 cases): 3 cases were type Ⅱ, 4 cases were type Ⅲ, all cases were found with typical TFH phenotype; 2 cases had HRS-like cells, 2 cases with large B transformation, and atypically; (4) non-mutation group (3 cases), all were type Ⅱ, with typical TFH phenotype, with significant extra-GC FDC proliferation, without HRS-like cells and large B transformation. Atypically, 1 case was TCR/IG. Univariate analysis confirmed that higher density of EBV positive cell was independent adverse prognostic factors for both overall survival (OS) and progression free survival(PFS), (P=0.017 and P=0.046). Conclusion: Pathological diagnoses of ALTL cases with HRS-like cells, large B transformation or type Ⅰ are difficult. Although TCR/IG gene rearrangement test is helpful but still with limitation. TES involving RHOA, IDH2, TET2, DNMT3A can robustly assist in the differential diagnosis of those difficult cases. Higher density of EBV positive cells counts in tumor tissue might be an indicator for poor survival.

Cite this article

Yun-fei SHI , Hao-jie WANG , Wei-ping LIU , Lan MI , Meng-ping LONG , Yan-fei LIU , Yu-mei LAI , Li-xin ZHOU , Xin-ting DIAO , Xiang-hong LI . Analysis of clinicopathological and molecular abnormalities of angioimmunoblastic T-cell lymphoma[J]. Journal of Peking University(Health Sciences), 2023 , 55(3) : 521 -529 . DOI: 10.19723/j.issn.1671-167X.2023.03.019

References

1 Swerdlow SH , Campo E , Pileri SA , et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms[J]. Blood, 2016, 127 (20): 2375- 2390.
2 Laurent C , Baron M , Amara N , et al. Impact of expert pathologic review of lymphoma diagnosis: Study of patients from the French lymphopath network[J]. J Clin Oncol, 2017, 35 (18): 2008- 2017.
3 van Krieken JHJM , Langerak AW , Macintyre EA , et al. Improved reliability of lymphoma diagnostics via PCR-based clonality testing: Report of the BIOMED-2 concerted action BHM4-CT98-3936[J]. Leukemia, 2006, 21 (2): 201- 206.
4 Langerak AW , Groenen PJTA , Brüggemann M , et al. Euro-Clonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations[J]. Leukemia, 2012, 26 (10): 2159- 2171.
5 Cortes JR , Palomero T . The curious origins of angioimmunoblastic T-cell lymphoma[J]. Curr Opin Hematol, 2016, 23 (4): 434- 443.
6 郭艳敏, 刘雪霏, 焦莉娟, 等. 血管免疫母细胞性T细胞淋巴瘤组织学分级与预后分析[J]. 中华病理学杂志, 2019, 48 (10): 784- 790.
7 Zhang C , Mi L , Wu M , et al. Angioimmunoblastic T-cell lymphoma: Treatment strategies and prognostic factors from a retrospective multicenter study in China[J]. Leuk Lymphoma, 2022, 63 (5): 1152- 1159.
8 Hsu YT , Wang YC , Chen RY , et al. Angioimmunoblastic T-cell lymphoma in Taiwan reveals worse progression-free survival for RHOA G17V mutated subtype[J]. Leuk Lymphoma, 2020, 61 (5): 1108- 1118.
9 李婷婷, 罗璐婷, 陈溢, 等. 84例血管免疫母细胞性T细胞淋巴瘤的临床特征及预后: 单中心分析[J]. 中华血液学杂志, 2020, 41 (11): 915- 920.
10 Steinhilber J , Mederake M , Bonzheim I , et al. The pathological features of angioimmunoblastic T-cell lymphomas with IDH2(R172) mutations[J]. Mod Pathol, 2019, 32 (8): 1123- 1134.
11 Hsi ED , Said J , Macon WR , et al. Diagnostic accuracy of a defined immunophenotypic and molecular genetic approach for peripheral T/NK-cell lymphomas. A North American PTCL study group project[J]. Am J Surg Pathol, 2014, 38 (6): 768- 775.
12 Heavican TB , Bouska A , Yu J , et al. Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma[J]. Blood, 2019, 133 (15): 1664- 1676.
13 Schwartz FH , Cai Q , Fellmann E , et al. TET2 mutations in B cells of patients affected by angioimmunoblastic T-cell lymphoma[J]. J Pathol, 2017, 242 (2): 129- 133.
14 Palomero T , Couronne L , Khiabanian H , et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas[J]. Nature Genetics, 2014, 46 (2): 166.
15 Yoo HY , Sung MK , Lee SH , et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma[J]. Nat Genet, 2014, 46 (4): 371- 375.
16 Fukumoto K , Nguyen TB , Chiba S , et al. Review of the biologic and clinical significance of genetic mutations in angioimmunoblastic T-cell lymphoma[J]. Cancer Sci, 2018, 109 (3): 490- 496.
17 Chiba S , Sakata-Yanagimoto M . Advances in understanding of angioimmunoblastic T-cell lymphoma[J]. Leukemia, 2020, 34 (10): 2592- 2606.
18 中国临床肿瘤学会肿瘤标志物专家委员会, 中国肿瘤驱动基因分析联盟. 二代测序技术在肿瘤精准医学诊断中的应用专家共识[J]. 中华医学杂志, 2018, 98 (26): 2057- 2065.
19 中国抗癌协会血液肿瘤专业委员会, 中华医学会血液学分会, 中华医学会病理学分会. 二代测序技术在血液肿瘤中的应用中国专家共识(2018年版)[J]. 中华血液学杂志, 2018, 39 (11): 881- 886.
20 Ondrejka SL , Grzywacz B , Bodo J , et al. Angioimmunoblastic T-cell lymphomas with the RHOA p.Gly17Val mutation have classic clinical and pathologic features[J]. Am J Surg Pathol, 2016, 40 (3): 335- 341.
21 张晨, 王小沛, 郑文, 等. 血管免疫母细胞性T细胞淋巴瘤42例临床分析[J]. 中华医学杂志, 2013, 93 (46): 3671- 3674.
22 Eladl AE , Shimada K , Suzuki Y , et al. EBV status has prognostic implication among young patients with angioimmunoblastic T-cell lymphoma[J]. Cancer Med, 2020, 9 (2): 678- 688.
23 王芳, 张瑰红, 丁凯阳, 等. EBER、PTEN和VEGF在血管免疫母T细胞淋巴瘤中的表达及其临床病理学意义[J]. 中国实验血液学杂志, 2015, 23 (3): 663- 668.
24 Liang JH , Lu L , Zhu HY , et al. The prognostic role of circulating Epstein-Barr Virus DNA copy number in angioimmunoblastic T-cell lymphoma treated with dose-adjusted EPOCH[J]. Cancer Res Treat, 2019, 51 (1): 150- 157.
25 Kim TY , Min GJ , Jeon YW , et al. Impact of Epstein-Barr virus on peripheral T-cell lymphoma not otherwise specified and angioimmunoblastic T-cell lymphoma[J]. Front Oncol, 2021, 11, 797028.
Outlines

/