Effect of vitamin D3 on mild cognitive impairment in type 2 diabetic mice and its possible mechanism

  • Lei BAO ,
  • Xia-xia CAI ,
  • Ming-yuan ZHANG ,
  • Lei-lei REN
Expand
  • 1. Department of Nutrition, Peking University International Hospital, Beijing 102206, China
    2. Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China

Received date: 2020-10-12

  Online published: 2023-08-03

Supported by

the National Natural Science Foundation of China(81803211);the Peking University International Hospital Research Funds(YN2018QX01)

Abstract

Objective: To investigate the effect of vitamin D3 on mild cognitive impairment in type 2 diabetic mice and explore its possible mechanism. Methods: Male db/db mice were randomly divided into 4 groups: the diabetes mellitus (DM) group, the low dose [250 IU/(kg·d)], medium dose [500 IU/ (kg·d)] and high dose [1 000 IU/(kg·d)] vitamin D3 intervention groups. The db/m mice were enrolled as the normal control group. The mice in vitamin D3 groups were gavaged with corresponding concentration of vitamin D3 in corn oil, and the mice in the normal control group and the DM group were gavaged with corn oil. After being fed for 16 weeks, fasting blood glucose of mice in each group was measured at the end of 0, 4, 8 and 16 weeks, and the new object recognition experiment was conducted at the end of 16 weeks. At the end of the experiment, the hippocampi and cortices of mice in each group were collected, and the concentration of 5-hydroxytryptamine (5-HT) and interleukin-18 (IL-18) in the hippocampal tissues of mice in each group were determined by enzyme linked immunosorbent assay (ELISA). Immunohistochemical staining was used to observe the expression of nucleotide binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) in the hippocampal tissues of the mice. Results: Compared with the normal control group, the fasting blood glucose of mice in DM group was significantly increased (P < 0.01). The exploration and discrimination index (DI) in the new object recognition experiment were significantly decreased (P < 0.05). The concentrations of 5-HT in the hippocampal tissues of mice were significantly decreased (P < 0.01). The concentrations of IL-18 in cortical tissues of mice were significantly increased (P < 0.01) and the positive expression of NLRP3 in the hippocampal tissues was higher. However, compared with the DM group, the fasting blood glucose of mice was significantly decreased in the medium and high dose vitamin D3 groups at the end of 8 and 16 weeks (P < 0.05 or P < 0.01). The exploration and DI of mice in the new object recognition experiment were significantly increased in high dose vitamin D3 group (P < 0.05). The concentrations of 5-HT in hippocampal tissues were significantly increased (P < 0.01) and the concentrations of IL-18 in cortical tissues were significantly decreased in the medium and high dose vitamin D3 groups (P < 0.01). The positive expression of NLRP3 in hippocampal tissues was reduced in all the vitamin D3 groups. Conclusion: Vitamin D3 might reduce the inflammatory response by inhibiting the activity of NLRP3, and thus ameliorating mild cognitive impairment in type 2 diabetic mice.

Cite this article

Lei BAO , Xia-xia CAI , Ming-yuan ZHANG , Lei-lei REN . Effect of vitamin D3 on mild cognitive impairment in type 2 diabetic mice and its possible mechanism[J]. Journal of Peking University(Health Sciences), 2023 , 55(4) : 587 -592 . DOI: 10.19723/j.issn.1671-167X.2023.04.003

References

1 Cho NH , Shaw JE , Karuranga S , et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138, 271- 281.
2 Xu Y , Wang L , He J , et al. 2010 China Noncommunicable Disease Surveillance Group. Prevalence and control of diabetes in Chinese adults[J]. JAMA, 2013, 310 (9): 948- 959.
3 Jia J , Wang F , Wei C , et al. The prevalence of dementia in urban and rural areas of China[J]. Alzheimers Dement, 2014, 10 (1): 1- 9.
4 De Felice FG , Ferreira ST . Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease[J]. Diabetes, 2014, 63 (7): 2262- 2272.
5 Ott A , Stolk RP , van Harskamp F . Diabetes mellitus and the risk of dementia: The Rotterdam Study[J]. Neurology, 1999, 53 (9): 1937- 1942.
6 Bitel CL , Kasinathan C , Kaswala RH , et al. Amyloid-β and tau pathology of Alzheimer' s disease induced by diabetes in a rabbit animal model[J]. J Alzheimers Dis, 2012, 32 (2): 291- 305.
7 Coll RC , Robertson AA , Chae JJ , et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases[J]. Nat Med, 2015, 21 (3): 248- 255.
8 Heneka MT , Kummer MP , Stutz A , et al. NLRP3 is activated in Alzheimer' s disease and contributes to pathology in APP/PS1 mice[J]. Nature, 2013, 493 (7434): 674- 678.
9 Schroder K , Zhou R , Tschopp J . The NLRP3 inflammasome: A sensor for metabolic danger?[J]. Science, 2010, 327 (5963): 296- 300.
10 Yu ZW , Zhang J , Li X , et al. A new research hot spot: The role of NLRP3 inflammasome activation, a key step in pyroptosis, in diabetes and diabetic complications[J]. Life Sci, 2020, 240, 117138.
11 Holick MF . The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention[J]. Rev Endocr Metab Disord, 2017, 18 (2): 153- 165.
12 Christakos S , Hewison M , Gardner DG , et al. Vitamin D: Beyond bone[J]. Ann N Y Acad Sci, 2013, 1287 (1): 45- 58.
13 Bevins RA , Besheer J . Object recognition in rats and mice: A one-trial non-matching-to-sample learning task to study recognition memory[J]. Nat Protoc, 2006, 1 (3): 1306- 1311.
14 Mortimer JA , Borenstein AR , Ding D , et al. High normal fasting blood glucose is associated with dementia in Chinese elderly[J]. Alzheimers Dement, 2010, 6 (6): 440- 447.
15 Li X , Song D , Leng SX . Link between type 2 diabetes and Alzheimer's disease: From epidemiology to mechanism and treatment[J]. Clin Interv Aging, 2015, 10, 549- 560.
16 Oosterwerff MM , Eekhoff EM , Heymans MW , et al. Serum 25-hydroxyvitamin D levels and the metabolic syndrome in older persons: A population-based study[J]. Clin Endocrinol (Oxf), 2011, 75 (5): 608- 613.
17 Nikooyeh B , Neyestani TR , Farvid M , et al. Daily consumption of vitamin D- or vitamin D+ calcium-fortified yogurt drink improved glycemic control in patients with type 2 diabetes: A randomized clinical trial[J]. Am J Clin Nutr, 2011, 93 (4): 764- 771.
18 Elkassaby S , Harrison LC , Mazzitelli N , et al. A randomised controlled trial of high dose vitamin D in recent-onset type 2 diabetes[J]. Diabetes Res Clin Pract, 2014, 106 (3): 576- 582.
19 Sadiya A , Ahmed SM , Carlsson M , et al. Vitamin D supplementation in obese type 2 diabetes subjects in Ajman, UAE: A randomized controlled double-blinded clinical trial[J]. Eur J Clin Nutr, 2015, 69 (6): 707- 711.
20 张悦, 张小年, 张皓. 颅脑创伤后认知相关神经递质变化的研究进展[J]. 中国康复理论与实践, 2018, 24 (1): 71- 75.
21 Goodwill AM , Szoeke C . A systematic review and meta-analysis of the effect of low vitamin D on cognition[J]. J Am Geriatr Soc, 2017, 65 (10): 2161- 2168.
22 Chen RH , Zhao XH , Gu Z , et al. Serum levels of 25-hydroxyvitamin D are associated with cognitive impairment in type 2 diabetic adults[J]. Endocrine, 2014, 45 (2): 319- 324.
23 Weber KS , Nowotny B , Strassburger K , et al. The role of markers of low-grade inflammation for the early time course of glycemic control, glucose disappearance rate, and β-cell function in recently diagnosed type 1 and type 2 diabetes[J]. Diabetes Care, 2015, 38 (9): 1758- 1767.
24 Lee YJ , Han SB , Nam SY , et al. Inflammation and Alzheimer' s disease[J]. Arch Pharm Res, 2010, 33 (10): 1539- 1556.
25 Mokhtari-Zaer A , Hosseini M , Salmani H , et al. Vitamin D3 attenuates lipopolysaccharide-induced cognitive impairment in rats by inhibiting inflammation and oxidative stress[J]. Life Sci, 2020, 253, 117703.
26 Davis BK , Wen H , Ting JP . The inflammasome NLRs in immunity, inflammation, and associated diseases[J]. Annu Rev Immunol, 2011, 29, 707- 735.
Outlines

/