Journal of Peking University(Health Sciences) >
Diagnostic efficacy of prostate cancer using targeted biopsy with 6-core systematic biopsy for patients with PI-RADS 5
Received date: 2023-03-13
Online published: 2023-10-09
Supported by
the Scientific Research Seed Fund of Peking University First Hospital(2020SF24)
Objective: To investigate the diagnostic efficacy of targeted biopsy (TBx), systematic biopsy (SBx), TBx+6-core SBx in prostate cancer (PCa) / clinically significant prostate cancer (cs-PCa) for patients with prostate imaging reporting and data system (PI-RADS) score of 5, and thereby to explore an optimal sampling scheme. Methods: The data of 585 patients who underwent multiparametric magnetic resonance imaging (mpMRI) with at least one lesion of PI-RADS score 5 at Peking University First Hospital from January 2019 to June 2022 were retrospectively analyzed. All patients underwent mpMRI / transrectal ultrasound (TRUS) cognitive guided biopsy (TBx+SBx). With the pathological results of combined biopsy as the gold standard, we compared the diagnostic efficacy of TBx only, SBx only, and TBx+6-core SBx for PCa/csPCa. The patients were grouped according to mpMRI T-stage (cT2, cT3, cT4) and the detection rates of different biopsy schemes for PCa/csPCa were compared using Cochran's Q and McNemar tests. Results: Among 585 patients with a PI-RADS score of 5, 560 (95.7%) were positive and 25(4.3%) were negative via TBx+SBx. After stratified according to mpMRI T-stage, 233 patients (39.8%) were found in cT2 stage, 214 patients (36.6%) in cT3 stage, and 138 patients (23.6%) in cT4 stage. There was no statistically significant difference in the detection rate of PCa/csPCa between TBx+6-core SBx and TBx+SBx (all P>0.999). Also, there was no statistically significant difference in the detection rate of PCa/csPCa between TBx and TBx+SBx in the cT2, cT3, and cT4 subgroups (PCa: P=0.203, P=0.250, P>0.999; csPCa: P=0.700, P=0.250, P>0.999). The missed diagnosis rate of SBx for PCa and csPCa was 2.1% (12/560) and 1.8% (10/549), and that of TBx for PCa and csPCa was 1.8% (10/560) and 1.4% (8/549), respectively. However, the detection rate of TBx+6-core SBx for PCa and csPCa was 100%. Compared with TBx+SBx, TBx and TBx+6-core SBx had a fewer number of cores and a higher detection rate per core (P < 0.001). Conclusion: For patients with a PI-RADS score of 5, TBx and TBx+6-core SBx showed the same PCa/csPCa detection rates and a high detection rates per core as that of TBx+SBx, which can be considered as an optimal scheme for prostate biopsy.
Yi LIU , Chang-wei YUAN , Jing-yun WU , Qi SHEN , Jiang-xi XIAO , Zheng ZHAO , Xiao-ying WANG , Xue-song LI , Zhi-song HE , Li-qun ZHOU . Diagnostic efficacy of prostate cancer using targeted biopsy with 6-core systematic biopsy for patients with PI-RADS 5[J]. Journal of Peking University(Health Sciences), 2023 , 55(5) : 812 -817 . DOI: 10.19723/j.issn.1671-167X.2023.05.006
| 1 | Culp MB , Soerjomataram I , Efstathiou JA , et al. Recent global patterns in prostate cancer incidence and mortality rates[J]. Eur Urol, 2020, 77 (1): 38- 52. |
| 2 | Shen WW , Cui LG , Ran WQ , et al. Targeted biopsy with reduced number of cores: Optimal sampling scheme in patients undergoing magnetic resonance imaging/transrectal ultrasound fusion prostate biopsy[J]. Ultrasound Med Biol, 2020, 46 (5): 1197- 1207. |
| 3 | Raman AG , Sarma KV , Raman SS , et al. Optimizing spatial biopsy sampling for the detection of prostate cancer[J]. J Urol, 2021, 206 (3): 595- 603. |
| 4 | Barkovich EJ , Shankar PR , Westphalen AC . A systematic review of the existing prostate imaging reporting and data system version 2 (PI-RADS v2) literature and subset meta-analysis of PI-RADSv2 categories stratified by Gleason scores[J]. AJR Am J Roentge-nol, 2019, 212 (4): 847- 854. |
| 5 | Stabile A , Giganti F , Kasivisvanathan V , et al. Factors influencing variability in the performance of multiparametric magnetic resonance imaging in detecting clinically significant prostate can-cer: A systematic literature review[J]. Eur Urol Oncol, 2020, 3 (2): 145- 167. |
| 6 | Hansen NL , Barrett T , Lloyd T , et al. Optimising the number of cores for magnetic resonance imaging-guided targeted and systema-tic transperineal prostate biopsy[J]. BJU Int, 2020, 125 (2): 260- 269. |
| 7 | 涂祥, 熊性宇, 张驰宸, 等. 6针系统穿刺联合3针磁共振引导靶向穿刺对前列腺癌的检出效果[J]. 中华泌尿外科杂志, 2022, 43 (12): 914- 919. |
| 8 | Aminsharifi A , Gupta RT , Tsivian E , et al. Reduced core targeted (RCT) biopsy: Combining multiparametric magnetic resonance imaging-transrectal ultrasound fusion targeted biopsy with laterally-directed sextant biopsies: An alternative template for prostate fusion biopsy[J]. Eur J Radiol, 2019, 110, 7- 13. |
| 9 | Teraoka S , Honda M , Shimizu R , et al. Optimal number of systematic biopsy cores used in magnetic resonance imaging/transrectal ultrasound fusion targeted prostate biopsy[J]. Yonago Acta Med, 2021, 64 (3): 260- 268. |
| 10 | Sigle A , Suarez-Ibarrola R , Benndorf M , et al. Individualized decision making in transperineal prostate biopsy: Should all men undergo an additional systematic biopsy?[J]. Cancers (Basel), 2022, 14 (21): 5230. |
/
| 〈 |
|
〉 |