Early prediction of severe COVID-19 in patients with Sjögren’s syndrome

  • Jian-bin LI ,
  • Meng-na LYU ,
  • Qiang CHI ,
  • Yi-lin PENG ,
  • Peng-cheng LIU ,
  • Rui WU
Expand
  • 1. Department of Rheumatology and Immunology, the first affiliated Hospital of Nanchang University, Nanchang 330006, China
    2. The First Clinical Medical College of Nanchang University, Nanchang 330006, China

Received date: 2023-08-13

  Online published: 2023-12-11

Abstract

Objective: To investigate the predictive value of blood cell ratios and inflammatory markers for adverse prognosis in patients with primary Sjögren’s syndrome (PSS) combined with coronavirus disease 2019 (COVID-19). Methods: We retrospectively collected clinical data from 80 patients with PSS and COVID-19 who visited the Rheumatology and Immunology Department of the First Affiliated Hospital of Nanchang University from December 2022 to February 2023. Inclusion criteria were (1) meeting the American College of Rheumatology (ACR) classification criteria for Sjögren’s syndrome; (2) confirmed diagnosis of COVID-19 by real-time reverse transcription polymerase chain reaction or antigen testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); (3) availability of necessary clinical data; (4) age > 18 years. According to the clinical classification criteria of the "Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (trial the 10th Revised Edition)", the patients were divided into the mild and severe groups. Disease activity in primary Sjögren' s syndrome was assessed using the European League Against Rheumatism (EULAR) Sjögren' s syndrome disease activity index (ESSDAI). Platelet-lymphocyte ratio (PLR), C-reactive protein-lymphocyte ratio (CLR), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and other laboratory data were compared between the two groups within 24-72 hours post-infection. Results: The mild group consisted of 66 cases with an average age of (51. 52±13. 16) years, and the severe group consisted of 14 cases with an average age of (52.64±10.20) years. Disease activity, CRP, platelets, PLR, and CLR were significantly higher in the severe group compared with the mild group (P < 0.05). Univariate analysis using age, disease activity, CRP, platelets, PLR, and CLR as independent variables indicated that disease activity, CRP, PLR, and CLR were correlated with the severity of COVID-19 (P < 0.05). Multivariate logistic regression analysis further confirmed that PLR (OR=1.016, P < 0.05) and CLR (OR=1.504, P < 0.05) were independent risk factors for the severity of COVID-19 in the critically ill patients. Receiver operator characteristic (ROC) curve analysis showed that the area under the curve (AUC) for PLR and CLR was 0.708 (95%CI: 0.588-0.828) and 0.725 (95%CI: 0.578-0.871), respectively. The sensitivity for PLR and CLR was 0.429 and 0.803, respectively, while the highest specificity was 0.714 and 0.758, respectively. The optimal cutoff values for PLR and CLR were 166.214 and 0.870, respectively. Conclusion: PLR and CLR, particularly the latter, may serve as simple and effective indicators for predicting the prognosis of patients with PSS and COVID-19.

Cite this article

Jian-bin LI , Meng-na LYU , Qiang CHI , Yi-lin PENG , Peng-cheng LIU , Rui WU . Early prediction of severe COVID-19 in patients with Sjögren’s syndrome[J]. Journal of Peking University(Health Sciences), 2023 , 55(6) : 1007 -1012 . DOI: 10.19723/j.issn.1671-167X.2023.06.008

References

1 Wiersinga WJ , Rhodes A , Cheng AC , et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review[J]. JAMA, 2020, 324 (8): 782- 793.
2 Yüce M , Filiztekin E , ?zkaya KG . COVID-19 diagnosis: A review of current methods[J]. Biosens Bioelectron, 2021, 172, 112752.
3 Pablos JL , Galindo M , Carmona L , et al. Clinical outcomes of hospitalised patients with COVID-19 and chronic inflammatory and autoimmune rheumatic diseases: A multicentric matched cohort study[J]. Ann Rheum Dis, 2020, 79 (12): 1544- 1549.
4 Luo H , Zhou X . Bioinformatics analysis of potential common pathogenic mechanisms for COVID-19 infection and primary Sj?gren’s syndrome[J]. Front Immunol, 2022, 13, 938837.
5 Brito-Zerón P , Acar-Denizli N , Zeher M , et al. Influence of geolocation and ethnicity on the phenotypic expression of primary Sj?gren’s syndrome at diagnosis in 8 310 patients: A cross-sectional study from the big data Sj?gren project consortium[J]. Ann Rheum Dis, 2017, 76 (6): 1042- 1050.
6 Mariette X , Criswell LA . Primary Sj?gren’s syndrome[J]. N Engl J Med, 2018, 378 (10): 931- 939.
7 Zhang G , Hu C , Luo L , et al. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China[J]. J Clin Virol, 2020, 127, 104364.
8 Russell CD , Parajuli A , Gale HJ , et al. The utility of peripheral blood leucocyte ratios as biomarkers in infectious diseases: A systematic review and meta-analysis[J]. J Infect, 2019, 78 (5): 339- 348.
9 Qu R , Ling Y , Zhang YH , et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19[J]. J Med Virol, 2020, 92 (9): 1533- 1541.
10 Lagunas-Rangel FA . Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis[J]. J Med Virol, 2020, 92 (10): 1733- 1734.
11 Shiboski CH , Shiboski SC , Seror R , et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sj?gren’s syndrome: A consensus and data-driven methodology involving three international patient cohorts[J]. Arthritis Rheumatol, 2017, 69 (1): 35- 45.
12 中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第十版)[J]. 中国合理用药探索, 2023, 20 (1): 1- 11.
13 Seror R , Bowman SJ , Brito-Zeron P , et al. Eular Sj?gren' s syndrome disease activity index (ESSDAI): A user guide[J]. RMD Open, 2015, 1 (1): e000022.
14 Sacks D , Baxter B , Campbell BCV , et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke: From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), and World Stroke Organization (WSO)[J]. J Vasc Interv Radiol, 2018, 29 (4): 441- 453.
15 Del Valle DM , Kim-Schulze S , Huang HH , et al. An inflammatory cytokine signature predicts COVID-19 severity and survival[J]. Nat Med, 2020, 26 (10): 1636- 1643.
16 Xiang N , Havers F , Chen T , et al. Use of national pneumonia surveillance to describe influenza A(H7N9) virus epidemiology, China, 2004-2013[J]. Emerg Infect Dis, 2013, 19 (11): 1784- 1790.
17 Kaya T , Nalbant A , K?l???oǧlu GK , et al. The prognostic signi-ficance of erythrocyte sedimentation rate in COVID-19[J]. Rev Assoc Med Bras (1992), 2021, 67 (9): 1305- 1310.
18 Lapi? I , Rogi? D , Plebani M . Erythrocyte sedimentation rate is associated with severe coronavirus disease 2019 (COVID-19): A pooled analysis[J]. Clin Chem Lab Med, 2020, 58 (7): 1146- 1148.
19 Roescher N , Tak PP , Illei GG . Cytokines in Sj?gren’s syndrome[J]. Oral Dis, 2009, 15 (8): 519- 526.
20 Tahir Huyut M , Huyut Z , lkbahar F , et al. What is the impact and efficacy of routine immunological, biochemical and hemato-logical biomarkers as predictors of COVID-19 mortality[J]. Int Immunopharmacol, 2022, 105, 108542.
21 Amgalan A , Othman M . Hemostatic laboratory derangements in COVID-19 with a focus on platelet count[J]. Platelets, 2020, 31 (6): 740- 745.
22 Tural Onur S , Alt?n S , Sokucu SN , et al. Could ferritin level be an indicator of COVID-19 disease mortality[J]. J Med Virol, 2021, 93 (3): 1672- 1677.
23 Ardestani A , Azizi Z . Targeting glucose metabolism for treatment of COVID-19[J]. Signal Transduct Target Ther, 2021, 6 (1): 112.
24 Wang K , Zhang Z , Yu M , et al. 15-day mortality and associated risk factors for hospitalized patients with COVID-19 in Wuhan, China: An ambispective observational cohort study[J]. Intensive Care Med, 2020, 46 (7): 1472- 1474.
25 Zhang JJ , Cao YY , Tan G , et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients[J]. Allergy, 2021, 76 (2): 533- 550.
26 Manne BK , Denorme F , Middleton EA , et al. Platelet gene expression and function in patients with COVID-19[J]. Blood, 2020, 136 (11): 1317- 1329.
27 Pormohammad A , Ghorbani S , Baradaran B , et al. Clinical characteristics, laboratory findings, radiographic signs and outcomes of 61, 742 patients with confirmed COVID-19 infection: A systematic review and meta-analysis[J]. Microb Pathog, 2020, 147, 104390.
28 Yang X , Yang Q , Wang Y , et al. Thrombocytopenia and its association with mortality in patients with COVID- 19[J]. J Thromb Haemost, 2020, 18 (6): 1469- 1472.
29 Jiang SQ , Huang QF , Xie WM , et al. The association between severe COVID-19 and low platelet count: evidence from 31 observational studies involving 7 613 participants[J]. Br J Haematol, 2020, 190 (1): e29- e33.
30 Xu Z , Shi L , Wang Y , et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8 (4): 420- 422.
31 Shi H , Wang W , Yin J , et al. The inhibition of IL-2/IL-2R gives rise to CD8+ T cell and lymphocyte decrease through JAK1-STAT5 in critical patients with COVID-19 pneumonia[J]. Cell Death Dis, 2020, 11 (6): 429.
32 Liu K , Yang T , Peng XF , et al. A systematic meta-analysis of immune signatures in patients with COVID-19[J]. Rev Med Virol, 2021, 31 (4): e2195.
33 Bohn MK , Lippi G , Horvath A , et al. Molecular, serological, and biochemical diagnosis and monitoring of COVID-19: IFCC taskforce evaluation of the latest evidence[J]. Clin Chem Lab Med, 2020, 58 (7): 1037- 1052.
34 Xu H , Zhong L , Deng J , et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa[J]. Int J Oral Sci, 2020, 12 (1): 8.
35 Gu X , Sha L , Zhang S , et al. Neutrophils and lymphocytes can help distinguish asymptomatic COVID-19 from moderate COVID-19[J]. Front Cell Infect Microbiol, 2021, 11, 654272.
36 Tan L , Wang Q , Zhang D , et al. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study[J]. Signal Transduct Target Ther, 2020, 5 (1): 33.
37 Y?ld?z F , G?kmn O . Haematologic indices and disease activity index in primary Sj?gren’s syndrome[J]. Int J Clin Pract, 2021, 75 (3): e13992.
38 Damar ?ak?rca T , Torun A , ?ak?rca G , et al. Role of NLR, PLR, ELR and CLR in differentiating COVID-19 patients with and without pneumonia[J]. Int J Clin Pract, 2021, 75 (11): e14781.
39 Sarkar S , Kannan S , Khanna P , et al. Role of platelet-to-lymphocyte count ratio (PLR), as a prognostic indicator in COVID-19: A systematic review and meta-analysis[J]. J Med Virol, 2022, 94 (1): 211- 221.
40 Mertoglu C , Huyut MT , Arslan Y , et al. How do routine laboratory tests change in coronavirus disease 2019[J]. Scand J Clin Lab Invest, 2021, 81 (1): 24- 33.
41 Ben Jemaa A , Salhi N , Ben Othmen M , et al. Evaluation of individual and combined NLR, LMR and CLR ratio for prognosis disease severity and outcomes in patients with COVID-19[J]. Int Immunopharmacol, 2022, 109, 108781.
Outlines

/