Establishment and application of key technologies for periodontal tissue regeneration based on microenvironment and stem cell regulation

  • Baojin MA 1, 2 ,
  • Jianhua LI 1, 3 ,
  • Yuanhua SANG 4 ,
  • Yang YU 1 ,
  • Jichuan QIU 4 ,
  • Jinlong SHAO 1 ,
  • Kai LI 3 ,
  • Shiyue LIU 1 ,
  • Mi DU 1 ,
  • Lingling SHANG 1 ,
  • Shaohua GE , 1, *
Expand
  • 1. Department of Periodontology, School and Hospital of Stomatology, Shandong University, Jinan 250012, China
  • 2. Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan 250012, China
  • 3. Department of Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Diseases & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
  • 4. State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
GE Shaohua, e-mail,

Received date: 2025-08-06

  Online published: 2025-08-13

Supported by

the National Natural Science Foundation of China(82320108004)

the National Natural Science Foundation of China(81873716)

the National Natural Science Foundation of China(81670993)

the National Natural Science Foundation of China(81901010)

the National Natural Science Foundation of China(81901009)

the National Natural Science Foundation of China(82471030)

the National Natural Science Foundation of China(82470981)

Excellent Young Scholars Fund (Overseas) of the National Natural Science Foundation of China

National Clinical Key Specialty (Periodontology) Construction Project

Construction Engineering Special Fund of "Taishan Scholars" of Shandong Province(tstp20250510)

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Abstract

The prevalence of periodontitis in China is as high as 74.2%, making it the leading cause of tooth loss in adults and severely impacting both oral and overall health. The treatment of periodontitis and periodontal tissue regeneration are global challenges of significant concern. GE Shaohua' s group at School and Hospital of Stomatology, Shandong University has focused on the key scientific issue of "remodeling the periodontal inflammatory microenvironment and optimizing tissue repair and regeneration". They have elucidated the mechanisms underlying the persistence of periodontitis, developed bioactive materials to enhance stem cell regenerative properties, and constructed a series of guided tissue regeneration barrier membranes to promote periodontal tissue repair, leading to the establishment of a comprehensive technology system for the treatment of periodontitis. Specific achievements and progress include: (1) Elucidating the mechanism by which key periodontal pathogens evade antimicrobial autophagy, leading to inflammatory damage; developing intelligent antimicrobial hydrogels and nanosystems, and creating metal-polyphenol network microsphere capsules to reshape the periodontal inflammatory microenvironment; (2) Explaining the mechanisms by which nanomaterial structures and electroactive interfaces regulate stem cell behavior, developing optimized nanostructures and electroactive biomaterials, thereby effectively enhancing the regenerative repair capabilities of stem cells; (3) Creating a series of biphasic heterogeneous barrier membranes, refining guided tissue regeneration and in situ tissue engineering techniques, stimulating the body' s intrinsic repair potential, and synergistically promoting the structural regeneration and functional reconstruction of periodontal tissues. The research outcomes of the group have innovated the fundamental theories of periodontal tissue regeneration, broken through foreign technological barriers and patent blockades, established a cascade repair strategy for periodontal regeneration, and enhanced China' s core competitiveness in the field of periodontal tissue regeneration.

Cite this article

Baojin MA , Jianhua LI , Yuanhua SANG , Yang YU , Jichuan QIU , Jinlong SHAO , Kai LI , Shiyue LIU , Mi DU , Lingling SHANG , Shaohua GE . Establishment and application of key technologies for periodontal tissue regeneration based on microenvironment and stem cell regulation[J]. Journal of Peking University(Health Sciences), 2025 , 57(5) : 841 -846 . DOI: 10.19723/j.issn.1671-167X.2025.05.005

2016年国务院颁布了《“健康中国2030”规划纲要》和《中国防治慢性病中长期规划(2017—2025年)》,特别指出口腔健康在全身健康中具有重要作用。2019年又发布了《健康口腔行动方案(2019—2025年)》,充分体现了我国政府对于口腔健康的高度重视。建立基于口腔健康的全身重大慢病防控技术体系,是实施健康中国发展战略的重要一环。作为口腔健康“头号杀手”的牙周炎,在我国患病率高达74.2%,被世界卫生组织列为危害人类健康、需要重点防治的三大疾病之一。牙周炎导致的支持组织丧失和结构破坏是成人失牙的首位原因,牙周炎亦是糖尿病等五十多种系统性疾病的重要危险因素,严重影响着口腔健康和全身健康[1]。在全球范围内,沉重的牙周炎流行病学负担已造成巨大的经济损失,因此,牙周炎治疗和牙周组织再生是世界关注的难题。牙周组织再生的前提是牙周炎症微环境的改善,菌斑生物膜的有效清除和炎症的控制对于牙周组织的再生至关重要。然而,目前机械清除和使用药物等临床治疗手段较为单一,且无法控制炎症。细胞的定向分化在牙周组织再生中发挥关键作用,如何优化干细胞的性能是关键。引导组织再生术(guided tissue regeneration,GTR)是牙周组织再生最有效的策略,但该技术实施需要的医用屏障膜仅有机械阻挡作用,缺乏生物学活性。
针对上述三个问题,本课题组自2009年以来,在国家自然科学基金等二十余项基金项目支持下,围绕“牙周炎症微环境重塑和组织修复再生优化”这个关键科学问题,通过阐明牙周炎顽固存在机制、创制生物活性材料以调控提升干细胞再生性能、构建系列引导组织再生屏障膜以促进牙周组织修复,从而创立了牙周炎治疗技术体系,具体研究成果和进展包括:(1)牙周炎症微环境顽固存在是牙周组织破坏的首要原因,且干扰后续再生修复过程,因此,本课题组阐明了牙周炎关键致病菌逃避抗菌自噬,从而导致炎症损伤的机制,研发出智能抗菌水凝胶和纳米抗菌体系,创制了金属多酚网络微球胶囊以重塑牙周炎症微环境;(2)优化干细胞,提升其再生性能是牙周炎治疗的另一关键,本课题组通过阐明材料纳米结构和电活性界面调控干细胞的行为机制,研发出纳米优化结构和电活性生物材料,从而有效提升干细胞再生修复能力;(3)激活机体内源性再生潜能,定向引导组织再生,可有效提升牙周缺损修复效能,本课题组创建系列双相异质屏障膜,完善引导组织再生和原位组织工程技术,激发机体自身修复潜能,协同促进牙周组织结构再生和功能重建。在研发牙周炎治疗有效策略基础上,本课题组进一步阐明牙周炎与脑小血管病等全身疾病相关性,临床证实控制牙周炎症可有效改善糖尿病牙周炎患者的治疗效果,明确了牙周炎对全身健康的影响;制定以控制炎症和促进再生为根本的重度牙周炎的临床诊疗指南,提出通过多学科联合诊疗促进牙周修复再生保留天然牙的策略,建立了通过学科交叉促进牙周病学融合发展的新理念。本课题组通过以下研究成果创新了牙周组织再生基础理论,打破了国外产品技术壁垒和专利封锁,建立了牙周再生级联修复策略,提高了我国在牙周组织再生领域的核心竞争力。

1 重塑牙周炎症状态下组织再生微环境

1.1 发现牙龈卟啉单胞菌(Porphyromonas gingiva-lisP. gingivalis)抵抗自噬免疫的机制,并通过智能响应抗菌实现牙周炎感染控制

P. gingivalis是一种主要的牙周病原菌,已被证实能够侵入牙龈上皮细胞、内皮细胞、牙龈成纤维细胞、巨噬细胞和树突状细胞等,并能逃避免疫清除,这与牙周炎顽固存在以及全身性疾病密切相关[2]。然而,P. gingivalis如何抵抗自噬免疫、在细胞内存活并诱导炎症的机制尚不明确。本课题组阐释了P. gingivalis在细胞内存活的机制是通过促进溶酶体外排、阻断自噬体-溶酶体融合、破坏自噬流来实现的[3],结果导致受损的线粒体积累,并激活核苷酸结合寡聚结构域样受体蛋白3炎症小体,招募凋亡相关斑点样蛋白和半胱天冬酶-1,从而促使促炎因子白细胞介素1β的产生,最终诱导炎症反应。基于致病菌的免疫逃逸作用,本课题组创新性研发智能抗菌促再生的水凝胶体系,具备灵敏响应牙龈蛋白酶的强抗菌活性,显著降低细胞内氧化应激水平并重塑成骨细胞活性,在体内能显著减轻牙周炎症并促进组织再生[4-5]。为进一步清除胞内细菌,本课题组构建并制备模块化自组装纳米抗生素,实现抗生素胞内的无载体长效递送,清除胞内牙周致病菌,抑制焦亡[6],并进一步通过靶向修饰,促进巨噬细胞摄取,提高治疗效率。

1.2 利用纳米压电协同固有免疫进行抗菌,实现无创清除菌斑生物膜,改善炎症微环境

传统抗生素的应用存在产生副作用和耐药性的风险,压电材料介导的抗菌作用已获得广泛关注和应用[7]。本课题组制备了金修饰的钛酸钡压电高效催化纳米颗粒,实现利用超声控制细菌感染;针对菌斑生物膜在组织间隙有限空间内附着的特点,提出了纳米压电限域催化杀菌清除菌斑生物膜的新策略,揭示了压电激活固有免疫参与抗菌的新机制[8-10],并进一步将纳米压电催化策略应用于牙胶尖修饰[11]。同时,本课题组创新性地构建了一种基于压电催化纳米颗粒的“纳米牙刷”,作为非侵入性口腔生物膜清除策略,该纳米牙刷通过葡聚糖介导的生物膜亲和作用,在超声辐照下诱导局部氧化应激反应,可高效瓦解生物膜,并抑制致病菌。纳米牙刷的选择性作用机制显著降低了对小鼠成纤维细胞和人永生化口腔上皮细胞的损伤,证实了其良好的生物安全性。体内研究进一步表明,该纳米牙刷能显著降低P. gingivalis的活力,并有效抑制牙槽骨吸收[12]

1.3 通过清除炎症介质,提高牙周炎治疗效率

临床检测表明, 在牙周炎发生发展过程中,牙周袋内硫化氢(H2S)含量与牙周炎严重程度呈正相关性。高浓度H2S可促进细菌增殖,损伤DNA,激活炎症,并加速骨吸收。本课题组基于氧化锌(ZnO)和H2S的化学反应,构建ZnO可注射复合凝胶,实现H2S的原位长期高效清除,缓解线粒体损伤,并抑制cGAS-STING通路激活,促进牙周炎治疗[13]。牙周炎微环境中存在高浓度铁离子,易引起铁死亡,从而加剧牙周炎症。基于硒掺杂碳点与铁离子的螯合配位作用,本课题组设计了胞外-胞质-线粒体多区域清除策略,实现线粒体稳态调控和铁死亡抑制以缓解炎症,并通过诱导干细胞成骨分化,促进牙周骨再生[14]。此外,牙周袋内多胺浓度与牙周炎进程呈显著正相关。与健康个体相比,牙周炎患者龈沟液中的多胺水平可升高至其25倍。累积于炎症局部的多胺可通过多种机制促进炎症反应进展,包括改变细菌生物膜表型、增强病原体毒力、诱导活性氧(reactive oxygen species,ROS)产生引发氧化应激,以及调控免疫细胞分化影响免疫应答等。本课题组构建了一种负载疏水改性磺丁基β-环糊精组装体的水凝胶体系,利用改性环糊精组装体中主体空腔结构及其表面负电性,实现对牙周炎病灶区域阳离子型多胺分子的有效结合与清除。该体系可通过抑制白细胞介素17信号通路,缓解细胞氧化应激与炎症反应,同时调节多胺的合成与代谢过程,抑制牙周致病菌的增殖及菌斑生物膜的形成。将多胺捕获策略应用于牙周炎动物模型,改性环糊精组装体能有效抑制牙周组织炎症反应,调控牙周致病菌组成,减轻牙槽骨丧失。

1.4 构建多酚功能化复合生物活性材料,协同治疗牙周炎

为了实现抗菌和抗炎的同步进行,本课题组开发了具有抗菌和免疫调节作用的多酚-胶原蛋白水凝胶,通过原位形成生物胶,有效促进感染区域组织愈合[15];构建了金属多酚网络外壳,能够充分发挥屏障保护和免疫调控等多重效应,并通过抗菌、抗炎和抗氧化等作用重塑牙周炎症微环境,有效维持牙周膜干细胞微球的干性,为牙周炎症微环境的重塑和后续组织再生提供新策略[16-19]。牙周炎微环境中存在大量活性氧,导致生长因子结构破坏、功能失活,因此,本课题组提出一种简便普适的保护性递送策略:利用表没食子儿茶素没食子酸酯与生长因子[如神经调节蛋白-1 (neuregulin-1,NRG-1)]间的多重物理相互作用,形成自组装颗粒[20]。自组装颗粒不仅能实现NRG-1的缓释,还可有效抵御氧化应激,一方面维持生长因子招募细胞、促进迁移及血管生成等生物学功能;另一方面,可保护干细胞免受氧化损伤,增强成骨分化能力,并调控TNF/NF-κB/JAK-STAT信号通路,恢复免疫稳态。体内实验证实,自组装颗粒通过干细胞募集、血管新生和免疫调节构建了有利的骨再生微环境,显著促进了牙周骨缺损修复。

2 发展干细胞应用新技术,促进牙周骨再生

2.1 提出生物活性材料自身作为“类因子”调控干细胞分化的新策略

生物活性材料自身的活性组分可作为“类因子”影响相关信号通路和细胞行为,从而决定干细胞分化的命运。本课题组基于自组装策略构建活性离子-分子复合体系,通过有效胞内摄取和响应释放,调控细胞周期和补体与凝血级联信号通路,以增强干细胞成骨分化和成血管分化[21]。同时,本课题组创新性发现骨主要无机成分羟基磷灰石(hydroxyapatite,HAp)经过纳米结构优化,可有效提高胞内钙离子水平,激活活性配体-受体相互作用等途径促进干细胞神经分化和再生[22]。此外,本课题组构建了多酚-氨基酸自组装纳米颗粒,通过调控线粒体稳态,同时激活cGMP-PKG信号通路,协同促进干细胞成骨分化和牙周骨再生;并通过多价适配体修饰,提高对干细胞的靶向性,增强治疗效率[23]

2.2 构建微纳结构化和电活性功能界面,调控干细胞命运

细胞和外界接触依赖于微纳尺度的细胞伪足,因此,生物活性材料界面的微纳结构可影响细胞的黏附、伸展和分化等行为。本课题组通过自组装模板调控生长法,构建长纳米线结构的HAp,调控细胞所感受的伸展阻力和JNK/ERK信号通路,促进干细胞成骨分化和神经分化,实现生物活性材料自身的微纳尺度结构模拟生长因子功能的新应用[24-25]。生物活性材料介导的压电信号已在骨再生领域得到广泛应用。胶原蛋白是人体内含量最丰富的蛋白质,具有完整三级结构的天然胶原蛋白展现出高效的压电性能。本课题组成功制备了具有完整三级结构的天然胶原蛋白压电支架,在超声刺激下,天然胶原蛋白压电支架可显著增强成骨分化、血管生成及神经分化,促进新骨形成。蛋白质组学分析进一步揭示了天然胶原蛋白压电支架主要通过上调PI3K-Akt信号通路促进骨组织形成的作用机制[26]。此外,本课题组发现HAp在胶原蛋白纤维内的结晶显著增强了胶原蛋白的压电性能。通过胶原蛋白纤维与磷酸钙前驱体的共组装,制备出纤维内矿化胶原蛋白。所得纤维内矿化胶原蛋白相较于天然胶原蛋白展现出更优异的压电特性,这归因于胶原蛋白构象的改变以及HAp结晶形成的独特扭曲不对称结构,更优异的压电性将进一步提高成骨分化效率[27]
本课题组还构建了钛酸钡-还原氧化石墨烯复合压电纳米贴片,该压电纳米贴片可以锚定在神经干细胞膜表面,随细胞一起动态迁移。在超声驱动下,压电纳米贴片产生的压电刺激直接作用于细胞膜电压门控钙离子通道,显著提高了神经干细胞向神经元分化的效率和成熟速度,促进神经元网络形成[28]。同时该压电纳米贴片可以避免被细胞内吞,防止了在溶酶体内ROS类物质的产生及其引起的细胞死亡,并且本课题组直接利用石墨烯电刺激纳米贴片包裹在细胞膜表面,通过电磁感应原理,使其在变化磁场中产生电信号,原位刺激细胞膜表面受体。石墨烯纳米贴片通过电化学剥离法制备表面修饰层黏连蛋白后,可以高效稳定地结合在细胞上并伴随细胞迁移。石墨烯纳米贴片所产生的电刺激可以提高神经干细胞向功能性神经元分化的速度和比例[29],有效的干细胞神经分化和神经再生对于提高牙周组织修复具有重要意义。

3 创制HAp/聚乳酸系列多功能屏障膜体系

屏障膜介导的引导组织再生术是临床常用的牙周组织修复技术。然而,目前医用屏障膜只具有支撑屏障作用,缺乏骨诱导性。为突破目前屏障膜难以有效促进骨再生的瓶颈,本课题组通过组分定域分布技术构建HAp/聚乳酸(polylactic acid,PLA)双相异质屏障膜,实现一膜两面双功能,即在PLA面发挥屏障支撑作用,同时在HAp面发挥成骨作用,促进牙周组织再生[30-32]
骨修复是一个微环境动态变化、多因素协同作用的复杂过程。同时,牙周炎导致的骨缺损修复更是面临细菌感染、炎症刺激和免疫失衡的挑战,因此,阶段性动态调控修复微环境,将成为促进牙周骨再生的一种有效策略。本课题组设计了负载基质细胞衍生因子1的HAp/PLA复合膜和铜离子-单宁酸修饰的PLA膜等系列新型GTR膜,通过促进细胞迁移、免疫调控和血管再生,提高牙周组织修复效率[33]。进一步,本课题组构建了可动态适配牙周再生复杂需求的铜-锶工程化多功能HAp/PLA屏障膜,实现对牙周组织修复过程中多生物学功能需求的时序调控[34]。此外,本课题组设计了功能化纤维介导的生物活性因子和离子控释体系,阶段性协同发挥促干细胞募集,调控炎症免疫反应,促血管分化、神经分化和成骨分化的作用,并发挥屏障功能,促进牙骨质再生和优化牙周膜纤维的排列,形成功能性牙骨质-牙周膜-骨复合体,实现牙周组织结构再生和功能重建[35-37]
本课题组针对牙周炎治疗中炎症微环境顽固存在和牙周创区余留干细胞数量少、功能差等关键技术瓶颈,聚焦“牙周炎症微环境重塑和组织再生优化”这一关键科学问题,针对牙周组织再生的临床需求开展系列研究,建立了基于微环境和干细胞调控的牙周组织再生系统性技术体系:在阐明牙周关键致病菌逃避抗菌自噬导致牙周炎症顽固存在基础上,开发智能抗菌体系,重塑牙周炎症微环境;创制生物活性材料调控干细胞命运,提升其促组织再生性能;构建基于GTR屏障膜的牙周再生新策略,促进牙周组织结构再生和功能重建;建立牙周炎治疗技术体系,制定牙周炎诊疗指南并进行临床推广,有效提升疗效,并建立通过学科交叉促进牙周病学融合发展的新理念。
综上所述,本课题组围绕调控微环境和干细胞促进牙周组织再生关键技术的构建和临床应用这一重要命题,创新了牙周临床治疗策略,革新了牙周再生级联修复理论,为提升我国在牙周组织再生领域的核心竞争力做出了重大贡献。

获奖项目  2025年山东省科技进步奖一等奖、2024年中华口腔医学会科技奖三等奖

国家专利  一种单侧原位矿化屏障膜及其制备方法和应用,发明专利(CN116474177B),2024;一种具有超声响应性的纳米压电颗粒/聚合物复合抗菌材料及其制备方法与应用,发明专利(CN116392635B),2024;一种预防及快速诊断和治疗龋病的口腔喷剂及其制备方法,发明专利(CN116440077B),2024;一种海藻酸盐可注射水凝胶及其制备方法与应用,发明专利(CN114699364B),2023;一种3D干细胞微球胶囊、其制备方法及在移植治疗领域的应用,发明专利(CN114376985B),2023;一种单侧负载银的丝素蛋白抗菌敷料及制备方法和应用,发明专利(CN113769151B),2022;一种靶向抗菌和原位促成骨双功能材料及其制备方法和应用,发明专利(CN112220967B),2021;一种羟基磷灰石-聚乳酸生物双面神膜及其制备方法与应用,发明专利(CN107684638B),2020;一种HAp-CSA-SF复合凝胶材料及其制备方法和应用,发明专利(CN110787323B),2020

利益冲突  所有作者均声明不存在利益冲突。

作者贡献声明  马保金、李建华、桑元华、于洋、仇吉川、邵金龙、李凯、刘世岳、杜密、商玲玲:商讨论文结构和框架,查阅文献,参与论文修改和润色;马保金:撰写论文:葛少华:总体把关和审定论文。

1
GBD 2021 Oral Disorders Collaborators . Trends in the global, regional, and national burden of oral conditions from 1990 to 2021: A systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2025, 405 (10482): 897- 910.

DOI

2
Huang J , Brumell JH . Bacteria-autophagy interplay: A battle for survival[J]. Nat Rev Microbiol, 2014, 12 (2): 101- 114.

DOI

3
Liu M , Shao J , Zhao Y , et al. Porphyromonas gingivalis evades immune clearance by regulating lysosome efflux[J]. J Dent Res, 2023, 102 (5): 555- 564.

DOI

4
Liu S , Wang YN , Ma B , et al. Gingipain-responsive thermosensitive hydrogel loaded with SDF-1 facilitates in situ periodontal tissue regeneration[J]. ACS Appl Mater Interfaces, 2021, 13 (31): 36880- 36893.

DOI

5
Liu S , Wang YN , Yu L , et al. Development of a thermosensitive hydrogel loaded with DTT and SDF-1 facilitating in situ periodontal bone regeneration[J]. Chem Eng J, 2022, 432, 134308.

DOI

6
Wang Z, Du J, Leng X, et al. Polyphenol-driven modular self-assembled nano-antibiotic for inflammation control via bacterial infection clearance and pyroptosis inhibition[J/OL]. Adv Funct Mater, 2025, 6(2025-06-23)[2025-07-01]. https://doi.org/10.1002/adfm.202510476.

7
Wang W , Li J , Liu H , et al. Advancing versatile ferroelectric materials toward biomedical applications[J]. Adv Sci, 2021, 8 (1): 2003074.

DOI

8
Liu X , Shen L , Xu W , et al. Low frequency hydromechanics-driven generation of superoxide radicals via optimized piezotronic effect for water disinfection[J]. Nano Energy, 2021, 88, 106290.

DOI

9
Li K , Xu W , Chen Y , et al. Piezoelectric nanostructured surface for ultrasound-driven immunoregulation to rescue titanium implant infection[J]. Adv Funct Mater, 2023, 33 (28): 2214522.

DOI

10
Liu X , Xu W , Feng J , et al. Adoptive cell transfer of piezo-activated macrophage rescues immunosuppressed rodents from lifethreating bacterial infections[J]. Nat Commun, 2025, 16 (1): 1363.

DOI

11
Xu W , Yu Y , Li K , et al. Surface-confined piezocatalysis inspired by ROS generation of mitochondria respiratory chain for ultrasound-driven noninvasive elimination of implant infection[J]. ACS Nano, 2023, 17 (10): 9415- 9428.

DOI

12
Liu X, Liang Y, Li Z, et al. Nano-toothbrush for noninvasive control of periodontitis[J/OL]. J Dent Res, 2025, 6(2025-06-26)[2025-07-06]. https://pubmed.ncbi.nlm.nih.gov/40574415.

13
Xie C , Zhang Q , Bianco A , et al. H2S-scavenging hydrogel alleviating mitochondria damage to control periodontitis[J]. J Dent Res, 2025, 104 (2): 172- 182.

DOI

14
Zhang K , Mao X , Zhao H , et al. Selenium-doped carbon dots inhibit ferroptosis by multi-hierarchy iron chelation and mitochondrial homeostasis regulation to control inflammation[J]. Chem Eng J, 2024, 499, 156544.

DOI

15
Shang L , Yan Y , Li Z , et al. Hydro-sensitive, in situ ultrafast physical self-gelatinizing, and red blood cells strengthened hemostatic adhesive powder with antibiosis and immunoregulation for wound repair[J]. Adv Sci (Weinh), 2024, 11 (4): e2306528.

DOI

16
Chen Y , Yang X , Li K , et al. Phenolic ligand-metal charge transfer induced copper nanozyme with reactive oxygen species-scavenging ability for chronic wound healing[J]. ACS Nano, 2024, 18 (9): 7024- 7036.

DOI

17
Liu J , Shi Y , Zhao Y , et al. A multifunctional metal-phenolic nanocoating on bone implants for enhanced osseointegration via early immunomodulation[J]. Adv Sci (Weinh), 2024, 11 (18): e2307269.

DOI

18
Wang Y , Li Z , Yu R , et al. Metal-phenolic network biointerface-mediated cell regulation for bone tissue regeneration[J]. Mater Today Bio, 2024, 30, 101400.

19
Yang X , Shao J , Zhang Y , et al. Microenvironment-driven Fenton nanoreactor enabled by metal-phenolic encapsulation of calcium peroxide for effective control of dental caries[J]. Adv Healthc Mater, 2024, 13 (10): e2303466.

DOI

20
Li L , Gao F , Zhang H , et al. A protective growth factor delivery strategy based on polyphenol-protein self-assembly to promote inflammatory bone regeneration[J]. Biomaterials, 2025, 320, 123272.

DOI

21
Liu Z , Yu Y , Kang W , et al. Self-assembled terbium-amino acid nanoparticles as a model for terbium biosafety and bone repair abi-lity assessment[J]. Compos Part B Eng, 2022, 244, 110186.

DOI

22
Hao M , Zhang Z , Liu C , et al. Hydroxyapatite nanorods function as safe and effective growth factors regulating neural differentiation and neuron development[J]. Adv Mater, 2021, 33 (33): 2100895.

DOI

23
Yu S , Du J , Zhang Q , et al. Mitochondria-targeted polyphenol-cysteine nanoparticles regulating AMPK-mediated mitochondrial homeostasis for enhanced bone regeneration[J]. Adv Funct Mater, 2024, 34 (41): 2402463.

DOI

24
Hao M , Zhang D , Wang W , et al. HAp thermosensitive nanohydrogel cavities act as brood pouches to incubate and control-release NSCs for rapid spinal cord injury therapy[J]. Adv Funct Mater, 2022, 32 (31): 2203492.

DOI

25
Li X , Ma B , Li J , et al. A method to visually observe the degradation-diffusion-reconstruction behavior of hydroxyapatite in the bone repair process[J]. Acta Biomater, 2020, 101, 554- 564.

DOI

26
Han J , Li Z , Du J , et al. Natural collagen scaffold with intrinsic piezoelectricity for enhanced bone regeneration[J]. Mater Today Bio, 2025, 31, 101532.

DOI

27
Zhang Y , Wang X , Wang W , et al. Unlocking piezoelectric potential in collagen: Intrafibrillar mineralization matters[J]. ACS Nano, 2025, 19 (29): 26411- 26424.

DOI

28
Wang W , Li K , Ma W , et al. Ultrasound-activated piezoelectric nanostickers for neural stem cell therapy of traumatic brain injury[J]. Nat Mater, 2025, 24 (7): 1137- 1150.

DOI

29
Wang L , Du J , Liu Q , et al. Wrapping stem cells with wireless electrical nanopatches for traumatic brain injury therapy[J]. Nat Commun, 2024, 15 (1): 7223.

DOI

30
Ma B , Han J , Zhang S , et al. Hydroxyapatite nanobelt/polylactic acid Janus membrane with osteoinduction/barrier dual functions for precise bone defect repair[J]. Acta Biomater, 2018, 71, 108- 117.

DOI

31
Li X , Wei L , Li J , et al. Multifunctional SDF-1-loaded hydroxyapatite/polylactic acid membranes promote cell recruitment, immunomodulation, angiogenesis, and osteogenesis for biomimetic bone regeneration[J]. Appl Mater Today, 2021, 22, 100942.

DOI

32
Liu S , Yang H , Zhang L , et al. Multifunctional barrier membranes promote bone regeneration by scavenging H2O2, generating O2, eliminating inflammation, and regulating immune response[J]. Colloids Surf B Biointerfaces, 2023, 222, 113147.

DOI

33
Zhang Y , Chen Y , Ding T , et al. Janus porous polylactic acid membranes with versatile metal-phenolic interface for biomimetic periodontal bone regeneration[J]. NPJ Regen Med, 2023, 8 (1): 28.

DOI

34
Zhang L , Li Z , Fu Y , et al. Phased ions-release bilayer-guided bone regeneration membrane with nanostructure-mediated antibacterial adhesion[J]. Small Struct, 2025, 6 (2): 2400408.

DOI

35
Ding T , Kang W , Li J , et al. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration[J]. J Nanobiotechnology, 2021, 19 (1): 247.

DOI

36
Ding T , Li J , Zhang X , et al. Super-assembled core/shell fibrous frameworks with dual growth factors for in situ cementum-ligament-bone complex regeneration[J]. Biomater Sci, 2020, 8 (9): 2459- 2471.

DOI

37
Shang L , Liu Z , Ma B , et al. Dimethyloxallyl glycine/nanosilicates-loaded osteogenic/angiogenic difunctional fibrous structure for functional periodontal tissue regeneration[J]. Bioact Mater, 2020, 6 (4): 1175- 1188.

Outlines

/