Journal of Peking University(Health Sciences) ›› 2019, Vol. 51 ›› Issue (4): 728-732. doi: 10.19723/j.issn.1671-167X.2019.04.023

Previous Articles     Next Articles

Biomechanical changes of sheep cervical spine after unilateral hemilaminectomy and different degrees of facetectomy

Chao WU1,Zhen-yu WANG1,(),Guo-zhong LIN1,(),Tao YU1,Bin LIU1,Yu SI1,Yi-bo ZHANG1,Yuan-chao LI2   

  1. 1.Department of Neurosurgery,Peking University Third Hospital,Beijing 100191,China
    2. School of Mechanical Engineering,Shanghai Jiao Tong University, Shanghai 200240,China
  • Received:2018-03-21 Online:2019-08-18 Published:2019-09-03
  • Contact: Zhen-yu WANG,Guo-zhong LIN E-mail:wzyu502@126.com;leenho@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(81441044);the Natural Science Foundation of Beijing(7144253)

Abstract:

Objective: To establish animal models and investigate the impact of unilateral hemilaminectomy(ULHL) and different degrees of facetectomy (FT) on the cervical spinal biomechanics.Methods: Twenty sheep were randomly and evenly divided into 4 groups. No operation was performed for group A, right C4-C6 ULHL was performed for group B, right C4-C6 ULHL and 50% ipsilateral C4-C5 FT was performed for group C, right C4-C6 ULHL and 100% ipsilateral C4-C5 FT was performed for group D. Animals of group A, B, C and D were sacrificed 24 weeks after operating and fresh cervical spine specimens were acquired, biomechanically tested and these data were compared to determine whether ULHL and different degrees of FT led to long-term differences in range of motion.Results: (1) Changes of the total range of motion of cervical spine 24 weeks after surgery: the total range of motion of group D (60.2°±8.6°) was significantly greater than group A (40.7°±6.4°) and group B (41.2°±13.1°) under flexion-extension station,the total range of motion of group D (81.5°±15.7°) was significantly greater than that of group A (56.7°±12.2°) and group B (57.7°±12.8°) under lateral bending station,and the total range of motion of group D (38.5°±17.5°) had no obvious increase compared with group A (26.4°±9.9°) and group B (27.1°±10.9°) under axial rotation station. The total range of motion of group C had no obvious increase compared with group A and group B under flexion-extension station (44.1°±11.7°), lateral bending station (73.6°±11.4°) and axial rotation station (31.3°±11.5°). (2) Changes of the intersegmental motion 24 weeks after surgery: the intersegmental motion of group D (20.3°±4.6°) at C4-C5 was significantly greater than that of group A (11.7°±3.4°) and group B (11.9°±2.1°) under flexion-extension station, the intersegmental motion of group D (26.8°±3.5°) at C4-C5 was significantly greater than that of group A (15.2°±3.1°) and group B (16.2°±3.2°) under lateral bending station, the intersegmental motion of group D (15.2°±3.5°) at C4-C5 was significantly greater than that of group A (6.6°±2.3°) and group B (7.1°±1.9°) under axial rotation station. The intersegmental motion of group C (21.2°±4.1°) at C4-C5 was significantly greater than that of group A and group B under lateral bending station, the intersegmental motion of group C at C4-C5 had no obvious increase compared with group A and group B under flexion-extension station (15.7°±3.7°) and axial rotation station (10.3°±3.1°).Conclusion: ULHL does not affect cervical stability, ULHL and 50% ipsilateral FT does not affect the long-term cervical stability, ULHL and 100% ipsilateral FT can lead to long-term instability under lateral bending and flexion-extension station.

Key words: Cervical spine, Hemilaminectomy, Facetectomy, Biomechanics

CLC Number: 

  • R681.5

Table 1

Total range of motion of cervical spine 24 weeks after surgery in different groups/(°)"

Group Group A Group B Group C Group D F value P value
Flexion-extension 40.7±6.4 41.2±13.1 44.1±11.7 60.2±8.6*# 4.026 0.03
Lateral bending 56.7±12.2 57.7±12.8 73.6±11.4 81.5±15.7*# 4.314 0.02
Axial rotation 26.4±9.9 27.1±10.9 31.3±11.5 38.5±17.5 0.941 0.44

Table 2

C3-C4 intersegmental motion of cervical spine 24 weeks after surgery in different groups/(°)"

Group Group A Group B Group C Group D F value P value
Flexion-extension 7.1±2.1 7.3±3.1 7.6±1.7 8.0±2.6 0.129 0.94
Lateral bending 12.3±2.3 12.7±2.6 16.3±4.3 18.5±5.7 2.806 0.07
Axial rotation 7.2±2.4 7.5±2.2 8.3±2.1 9.6±2.7 1.033 0.41

Table 3

C4-C5 intersegmental motionof cervical spine 24 weeks after surgery in different groups/(°)"

Group Group A Group B Group C Group D F value P value
Flexion-extension 11.7±3.4 11.9±2.1 15.7±3.7 20.3±4.6*# 6.433 0.005
Lateral bending 15.2±3.1 16.2±3.2 21.2±4.1*# 26.8±3.5*# 11.594 0.001
Axial rotation 6.6±2.3 7.1±1.9 10.3±3.1 15.2±3.5*# 10.072 0.001

Table 4

C5-C6 intersegmental motion of cervical spine 24 weeks after surgery in different groups/(°)"

Group Group A Group B Group C Group D F value P value
Flexion-extension 12.7±2.4 13.2±3.1 13.4±2.7 15.2±3.6 0.667 0.58
Lateral bending 15.7±3.2 17.3±2.8 19.6±3.4 20.5±3.1 2.428 0.10
Axial rotation 7.1±2.6 7.3±3.1 9.3±2.5 11.5±3.5 2.425 0.10

Table 5

C6-C7 intersegmental motion of cervical spine 24 weeks after surgery in different groups/(°)"

Group Group A Group B Group C Group D F value P value
Flexion-extension 10.0±2.4 11.2±2.7 12.1±2.7 14.3±2.5 2.482 0.098
Lateral bending 15.1±2.2 17.5±2.6 18.6±3.4 19.5±2.7 2.374 0.109
Axial rotation 5.7±2.1 6.1±2.3 8.2±2.5 8.9±2.4 2.260 0.124
[1] Safaee MM, Lyon R, Barbaro NM , et al. Neurological outcomes and surgical complications in 221 spinal nerve sheath tumors[J]. J Neurosurg Spine, 2017,26(1):103-111.
[2] Nori S, Iwanami A, Yasuda A , et al. Risk factor analysis of kyphotic malalignment after cervical intramedullary tumor resection in adults[J]. J Neurosurg Spine, 2017,27(5):518-527.
[3] Lau D, Winkler EA, Than KD , et al. Laminoplasty versus laminectomy with posterior spinal fusion for multilevel cervical spondylotic myelopathy: influence of cervical alignment on outcomes[J]. J Neurosurg Spine, 2017,27(5):508-517.
[4] Huang Y, Wang Z, Chen Z , et al. Posterior hemi-/laminectomy and facetectomy approach for the treatment of dumbbell-shaped schwannomas in the subaxial cervical spine: A retrospective study of 26 cases[J]. Eur Neurol, 2017,78(3/4):188-195.
[5] Mobbs RJ, Maharaj MM, Phan K , et al. Unilateral hemilaminectomy for intradural lesions[J]. Orthop Surg, 2015,7(3):244-249.
[6] Turel MK , D’Souza WP, Rajshekhar V. Hemilaminectomy approach for intradural extramedullary spinal tumors: an analysis of 164 patients[J]. Neurosurg Focus, 2015,39(2):E9.
[7] Xie T, Qian J, Lu Y , et al. Unilateral multilevel interlaminar fenestration: a minimally invasive approach for cervical intrame-dullary lesions[J]. J Clin Neurosci, 2014,21(7):196-204.
[8] Villalonga JF, Cervio A . Surgical treatment of intradural extra-medullary lesions by hemilaminectomy[J]. Surg Neurol Int, 2017,8(Suppl 2):S11-S17.
[9] Afathi M, Peltier E, Adetchessi T , et al. Minimally invasive transmuscular approach for the treatment of benign intradural extramedullary spinal cord tumours: Technical note and results[J]. Neurochirurgie, 2015,61(5):333-338.
[10] Taylor-Brown FE, Cardy TJ, Liebel FX , et al. Risk factors for early post-operative neurological deterioration in dogs undergoing a cervical dorsal laminectomy or hemilaminectomy: 100 cases (2002-2014)[J]. Vet J, 2015,206(3):327-331.
[11] Munting E, Röder C, Sobottke R , et al. Patient outcomes after laminotomy, hemilaminectomy, laminectomy and laminectomy with instrumented fusion for spinal canal stenosis: a propensity score-based study from the Spine Tango registry[J]. Eur Spine J, 2015,24(2):358-368.
[12] 林国中, 王振宇, 谢京城 , 等. 半椎板入路显微手术治疗颈椎椎管内肿瘤[J]. 中国临床神经外科杂志, 2010,15(7):390-392.
[13] Inoue A, Ikata T, Katoh S . Spinal deformity following surgery for spinal cord tumors and tumorous lesions: analysis based on an assessment of the spinal functional curve[J]. Spinal Cord, 1996,34(9):536-542.
[14] Raynor RB, Pugh J, Shapiro I . Cervical facetectomy and its effect on spine strength[J]. J Neurosurg, 1985,63(2):278-282.
[15] Raynor RB, Moskovich R, Zidel P , et al. Alterations in primary and coupled neck motions after facetectomy[J]. Neurosurgery, 1987,21(5):681-687.
[16] Zdeblick TA, Zou D, Warden KE , et al. Cervical stability after foraminotomy. A biomechanical in vitro analysis[J]. J Bone Joint Surg Am, 1992,74(1):22-27.
[17] Nowinski GP, Visarius H, Nolte LP , et al. A biomechanical comparison of cervical laminaplasty and cervical laminectomy with progressive facetectomy[J]. Spine, 1993,18(14):1995-2004.
[18] Kandziora F, Pflugmacher R, Scholz M , et al. Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study[J]. Spine, 2001,26(9):1028-1037.
[19] 吴荣, 闵继康, 黄曙峰 , 等. 颈椎棘突骨折累及后方韧带复合体损伤对羊颈椎生物力学稳定性的影响[J]. 医用生物力学, 2017,32(05):422-426.
[20] Si Y, Wang Z, Yu T , et al. Results of cervical recapping laminoplasty: gross anatomical changes, biomechanical evaluation at different time points and degrees of level involvement[J]. PLoS One, 2014,9(6):e100689.
[21] Porto MA, Silva P, Rosa R , et al. Experimental in vivo acute and chronic biomechanical and histomorphometrical comparison of self-drilling and self-tapping anterior cervical screws[J]. Eur Spine J, 2012,21(5):956-963
[22] De Vries Watson NA, Gandhi AA, Fredericks DC , et al. Sheep cervical spine biomechanics: a finite element study[J]. Iowa Orthop J, 2014,34(6):137-143.
[23] Walsh WR, Pelletier MH, Bertollo N , et al. Does PEEK/HA enhance bone formation compared with PEEK in a sheep cervical fusion model?[J]. Clin Orthop Relat R, 2016,474(11):2364-2372.
[24] Daentzer D, Welke B, Hurschler C , et al. In vitro-analysis of kinematics and intradiscal pressures in cervical arthroplasty versus fusion: a biomechanical study in a sheep model with two semi-constrained prosjournal[J]. Bio Med Eng Online, 2015,14:27.
[25] Daentzer D, Floerkemeier T, Bartsch I , et al. Preliminary results in anterior cervical discectomy and fusion with an experimental bioabsorbable cage: clinical and radiological findings in an ovine animal model[J]. Springer Plus, 2013,8(2):418.
[26] Xie T, Qian J, Lu Y , et al. Biomechanical comparison of laminectomy, hemilaminectomy and a new minimally invasive approach in the surgical treatment of multilevel cervical intradural tumour: a finite element analysis[J]. Eur Spine J, 2013,22(12):2719-2730.
[27] Ogden AT, Bresnahan L, Smith JS , et al. Biomechanical com-parison of traditional and minimally invasive intradural tumor exposures using finite element analysis[J]. Clin Biomech, 2009,24(2):143-147.
[28] Crawford NR, Duggal N, Chamberlain RH , et al. Unilateral cervical facet dislocation: injury mechanism and biomechanical consequences[J]. Spine, 2002,27(17):1858-1864.
[29] Zdeblick TA, Abitbol JJ, Kunz DN , et al. Cervical stability after sequential capsule resection[J]. Spine, 1993,18(14):2005-2008.
[1] Lu ZHANG,Xiao-hong HU,Cheng CHEN,Yue-ming CAI,Qing-wen WANG,Jin-xia ZHAO. Analysis of cervical instability and clinical characteristics in treatment-naive rheumatoid arthritis patients [J]. Journal of Peking University (Health Sciences), 2021, 53(6): 1049-1054.
[2] Lu ZHANG,Xiao-hong HU,Qing-wen WANG,Yue-ming CAI,Jin-xia ZHAO,Xiang-yuan LIU. Population distribution and clinical characteristics in rheumatoid arthritis patients with cervical spine instability [J]. Journal of Peking University (Health Sciences), 2020, 52(6): 1034-1039.
[3] Yuan WU,Xiao-li LI,Song-lin YANG,Xiao-ming YAN,Hai-li LI. Examination and discriminant analysis of corneal biomechanics with CorVis ST in keratoconus and subclinical keratoconus [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 881-886.
[4] Yong-zheng HAN,Feng-yun JING,Mao XU,Xiang-yang GUO. Anesthesia management of cervical chordoma resection: A case report [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 981-983.
[5] Hong HONG,Yu-ting QIAN,Lei FU,Wu WANG,Cheng-hui LI,Yi-qing YIN. Study on the use of CT three-dimensional reconstruction technique for guiding tracheal intubation with rigid fiber bronchoscope in difficult airway [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 870-874.
[6] RONG Yan-bo, TIAN Guang-lei, CHEN Shan-lin. Biomechanical analysis of the deep radioulnar ligaments stabilizing the distal radioulnar joint [J]. Journal of Peking University(Health Sciences), 2017, 49(3): 518-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Author. English Title Test[J]. Journal of Peking University(Health Sciences), 2010, 42(1): 1 -10 .
[2] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 188 -191 .
[3] . [J]. Journal of Peking University(Health Sciences), 2009, 41(3): 376 -379 .
[4] . [J]. Journal of Peking University(Health Sciences), 2009, 41(4): 459 -462 .
[5] . [J]. Journal of Peking University(Health Sciences), 2010, 42(1): 82 -84 .
[6] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 319 -322 .
[7] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 333 -336 .
[8] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 337 -340 .
[9] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 225 -328 .
[10] . [J]. Journal of Peking University(Health Sciences), 2007, 39(4): 346 -350 .