Journal of Peking University (Health Sciences) ›› 2024, Vol. 56 ›› Issue (1): 4-8. doi: 10.19723/j.issn.1671-167X.2024.01.002

Previous Articles     Next Articles

Bionic design, preparation and clinical translation of oral hard tissue restorative materials

Han ZHAO1,Yan WEI2,Xuehui ZHANG3,Xiaoping YANG4,Qing CAI4,Chengyun NING5,Mingming XU2,Wenwen LIU2,Ying HUANG2,Ying HE2,Yaru GUO2,Shengjie JIANG2,Yunyang BAI2,Yujia WU2,Yusi GUO2,Xiaona ZHENG2,Wenjing LI2,Xuliang DENG2,*()   

  1. 1. Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
    2. Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
    3. Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
    4. College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
    5. School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
  • Received:2023-11-27 Online:2024-02-18 Published:2024-02-06
  • Contact: Xuliang DENG E-mail:kqdengxuliang@bjmu.edu.cn
  • Supported by:
    the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(82221003);the Major Program of National Natural Science Foundation of China(81991505);the National Key Research and Development Program of China(2018YFC1105300);the National Science Fund for Distinguished Young Scholars(81425007);the National Science Fund for Distinguished Young Scholars(82225012);the National High Technology Research and Development Program of China (863 Program)(2011AA030102)

RICH HTML

  

Abstract:

Oral diseases concern almost every individual and are a serious health risk to the population. The restorative treatment of tooth and jaw defects is an important means to achieve oral function and support the appearance of the contour. Based on the principle of "learning from the nature", Deng Xuliang's group of Peking University School and Hospital of Stomatology has proposed a new concept of "microstructural biomimetic design and tissue adaptation of tooth/jaw materials" to address the worldwide problems of difficulty in treating dentine hypersensitivity, poor prognosis of restoration of tooth defects, and vertical bone augmentation of alveolar bone after tooth loss. The group has broken through the bottleneck of multi-stage biomimetic technology from the design of microscopic features to the enhancement of macroscopic effects, and invented key technologies such as crystalline/amorphous multi-level assembly, ion-transportation blocking, and multi-physical properties of the micro-environment reconstruction, etc. The group also pioneered the cationic-hydrogel desensitizer, digital stump and core integrated restorations, and developed new crown and bridge restorative materials, gradient functionalisation guided tissue regeneration membrane, and electrically responsive alveolar bone augmentation restorative membranes, etc. These products have established new clinical strategies for tooth/jaw defect repair and achieved innovative results. In conclusion, the research results of our group have strongly supported the theoretical improvement of stomatology, developed the technical system of oral hard tissue restoration, innovated the clinical treatment strategy, and led the progress of the stomatology industry.

Key words: Dental restoration materials, Guided bone regeneration membranes, Electrical microenvironment, Bone filling materials, Biomechanics

CLC Number: 

  • R781.05
1 Addy M . Dentine hypersensitivity: New perspectives on an old problem[J]. Int Dent J, 2002, 52 (5 Suppl 2): 367- 375.
2 Gysi A . An attempt to explain the sensitiveness of dentine[J]. Br J Dent Sci, 1900, 43, 865- 868.
3 Brännström M , Aström A . The hydrodynamics of the dentine; its possible relationship to dentinal pain[J]. Int Dent J, 1972, 22 (2): 219- 227.
4 Porto IC , Andrade AK , Montes MA . Diagnosis and treatment of dentinal hypersensitivity[J]. J Oral Sci, 2009, 51 (3): 323- 332.
doi: 10.2334/josnusd.51.323
5 Chen N , Deng J , Jiang S , et al. The mechanism of dentine hypersensitivity: Stimuli-induced directional cation transport through dentinal tubules[J]. Nano Research, 2022, 16 (1): 991- 998.
6 Gordon LM , Cohen MJ , MacRenaris KW , et al. Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel[J]. Science, 2015, 347 (6223): 746- 750.
doi: 10.1126/science.1258950
7 DeRocher KA , Smeets PJM , Goodge BH , et al. Chemical gra-dients in human enamel crystallites[J]. Nature, 2020, 583 (7814): 66- 71.
doi: 10.1038/s41586-020-2433-3
8 Wei Y , Liu S , Xiao Z , et al. Enamel repair with amorphous ceramics[J]. Adv Mater, 2020, 32 (7): e1907067.
doi: 10.1002/adma.201907067
9 Hou J , Xiao Z , Liu Z , et al. An amorphous peri-implant ligament with combined osteointegration and energy-dissipation[J]. Adv Mater, 2021, 33 (45): e2103727.
doi: 10.1002/adma.202103727
10 Vermeulen S , Tahmasebi Birgani Z , Habibovic P . Biomaterial-induced pathway modulation for bone regeneration[J]. Biomate-rials, 2022, 283, 121431.
doi: 10.1016/j.biomaterials.2022.121431
11 Guo Y , Mei F , Huang Y , et al. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis[J]. Bioact Mater, 2021, 7, 364- 376.
12 Liu WT , Wei Y , Zhang XH , et al. Lower extent but similar rhythm of osteogenic behavior in hBMSCs cultured on nanofibrous scaffolds versus induced with osteogenic supplement[J]. ACS Nano, 2013, 7 (8): 6928- 6938.
doi: 10.1021/nn402118s
13 Lv Y , Huang Y , Xu M , et al. The miR-193a-3p-MAP3k3 signaling axis regulates substrate topography-induced osteogenesis of bone marrow stem cells[J]. Adv Sci (Weinh), 2020, 7 (1): 1901412.
doi: 10.1002/advs.201901412
14 Jiang S , Li H , Zeng Q , et al. The dynamic counterbalance of RAC1-YAP/OB-cadherin coordinates tissue spreading with stem cell fate patterning[J]. Adv Sci (Weinh), 2021, 8 (10): 2004000.
doi: 10.1002/advs.202004000
15 Wei Y , Jiang S , Si M , et al. Chirality controls mesenchymal stem cell lineage diversification through mechanoresponses[J]. Adv Mater, 2019, 31 (16): e1900582.
doi: 10.1002/adma.201900582
16 Jiang S , Zeng Q , Zhao K , et al. Chirality bias tissue homeostasis by manipulating immunological response[J]. Adv Mater, 2021, 34 (2): e2105136.
17 Liu Y , Zhang X , Cao C , et al. Built-in electric fields dramatically induce enhancement of osseointegration[J]. Adv Funct Mater, 2017, 27 (47): 1703771.
doi: 10.1002/adfm.201703771
18 Zhang X , Zhang C , Lin Y , et al. Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment[J]. ACS Nano, 2016, 10 (8): 7279- 7286.
doi: 10.1021/acsnano.6b02247
19 Wei Y , Zhang X , Song Y , et al. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration[J]. Biomed Mater, 2021, 6 (5): 055008.
20 Liu W , Zhang F , Yan Y , et al. Remote tuning of built-in magnetoelectric microenvironment to promote bone regeneration by modulating cellular exposure to arginylglycylaspartic acid peptide[J]. Adv Funct Mater, 2020, 31 (6): 2006226.
21 Liu W , Zhao H , Zhang C , et al. In situ activation of flexible magnetoelectric membrane enhances bone defect repair[J]. Nat Commun, 2023, 14 (1): 4091.
doi: 10.1038/s41467-023-39744-3
22 Dai X , Heng BC , Bai Y , et al. Restoration of electrical micro-environment enhances bone regeneration under diabetic conditions by modulating macrophage polarization[J]. Bioactive materials, 2021, 6 (7): 2029- 2038.
doi: 10.1016/j.bioactmat.2020.12.020
23 Zhao H , Liu S , Wei Y , et al. Multiscale engineered artificial tooth enamel[J]. Science, 2022, 375 (6580): 551- 556.
doi: 10.1126/science.abj3343
24 Zhou Y , Deng J , Zhang Y , et al. Engineering DNA-guided hydroxyapatite bulk materials with high stiffness and outstanding antimicrobial ability for dental inlay applications[J]. Adv Mater, 2022, 34 (27): e2202180.
doi: 10.1002/adma.202202180
25 Chen K , Tang X , Jia B , et al. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking[J]. Nat Mater, 2022, 21 (10): 1121- 1129.
doi: 10.1038/s41563-022-01292-4
26 Lin S , Cai Q , Ji J , et al. Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation[J]. Compos Sci Technol, 2008, 68 (15): 3322- 3329.
27 Zhang S , Huang Y , Yang X , et al. Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration[J]. J Biomed Mater Res A, 2009, 90 (3): 671- 679.
28 Zhang X , Cai Q , Liu H , et al. Calcium ion release and osteoblastic behavior of gelatin/beta-tricalcium phosphate composite nanofibers fabricated by electrospinning[J]. Mater Letters, 2012, 73, 172- 175.
doi: 10.1016/j.matlet.2012.01.049
29 Zhang C , Liu W , Cao C , et al. Modulating surface potential by controlling the β phase content in poly(vinylidene fluoridetrifluoroethylene) membranes enhances bone regeneration[J]. Adv Healthc Mater, 2018, 7 (11): e1701466.
doi: 10.1002/adhm.201701466
30 Bai Y , Zheng X , Zhong X , et al. Manipulation of heterogeneous surface electric potential promotes osteogenesis by strengthening RGD peptide binding and cellular mechanosensing[J]. Advanced Materials, 2023, 35 (24): e2209769.
doi: 10.1002/adma.202209769
31 Wei Y , Mo X , Zhang P , et al. Directing stem cell differentiation via electrochemical reversible switching between nanotubes and nanotips of polypyrrole array[J]. ACS Nano, 2017, 11 (6): 5915- 5924.
doi: 10.1021/acsnano.7b01661
[1] Yuan WU,Xiao-li LI,Song-lin YANG,Xiao-ming YAN,Hai-li LI. Examination and discriminant analysis of corneal biomechanics with CorVis ST in keratoconus and subclinical keratoconus [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 881-886.
[2] Chao WU,Zhen-yu WANG,Guo-zhong LIN,Tao YU,Bin LIU,Yu SI,Yi-bo ZHANG,Yuan-chao LI. Biomechanical changes of sheep cervical spine after unilateral hemilaminectomy and different degrees of facetectomy [J]. Journal of Peking University(Health Sciences), 2019, 51(4): 728-732.
[3] RONG Yan-bo, TIAN Guang-lei, CHEN Shan-lin. Biomechanical analysis of the deep radioulnar ligaments stabilizing the distal radioulnar joint [J]. Journal of Peking University(Health Sciences), 2017, 49(3): 518-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Journal of Peking University(Health Sciences), 2007, 39(4): 434 -436 .
[2] . [J]. Journal of Peking University(Health Sciences), 2001, 33(1): 50 -53 .
[3] . [J]. Journal of Peking University(Health Sciences), 2001, 33(6): 540 -544 .
[4] . [J]. Journal of Peking University(Health Sciences), 2002, 34(1): 33 -35 .
[5] . [J]. Journal of Peking University(Health Sciences), 2002, 34(1): 93 -94 .
[6] . [J]. Journal of Peking University(Health Sciences), 2002, 34(2): 97 -98 .
[7] . [J]. Journal of Peking University(Health Sciences), 2002, 34(2): 140 -143 .
[8] . [J]. Journal of Peking University(Health Sciences), 2010, 42(4): 476 -479 .
[9] . [J]. Journal of Peking University(Health Sciences), 2008, 40(2): 208 -210 .
[10] . [J]. Journal of Peking University(Health Sciences), 2010, 42(5): 520 -525 .