Journal of Peking University (Health Sciences) ›› 2022, Vol. 54 ›› Issue (1): 126-133. doi: 10.19723/j.issn.1671-167X.2022.01.020

Previous Articles     Next Articles

Clinical classification and treatment decision of implant fracture

LI Yi,YU Hua-jie,QIU Li-xin()   

  1. Fourth Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100025, China
  • Received:2020-03-16 Online:2022-02-18 Published:2022-02-21
  • Contact: Li-xin QIU E-mail:qiulixin@263.net

Abstract:

Objective: To propose a set of two-dimensional clinical classification of fractured implants based on the follow-up of fracturing pattern of implant body and peri-implant bone defect morphology of 32 fractrued implants, and summarize the treatment decisions of fractured implants according to this new set of classification, so as to provide guidance for clinical practice. Methods: During 25 years of clinical practice, clinical records of 27 patients of 32 fractured implants in 5 481 patients with 10 642 implants were made. The fracturing pattern of implant body, implant design, peri-implant bone defect morphology and treatment options were analyzed. A set of two-dimensional clinical classification based on the morphology and bone absorption of implant fracture was proposed. The treatment decision-making scheme based on the new classification of implant fracture was discussed. Results: In the new classification system, vertical fracture of implant neck (Type 1 of implant fracture morphology, F1) and horizontal fracture of implant neck (Type 2 of implant fracture morphology, F2) were common, accounting for 50% and 40.6% respectively, while deep horizontal fracture of implant body (Type 3 of implant fracture morphology, F3) (9.4%) were rare, while the three types of bone defects (D1, no bone defect or narrow infrabony defects; D2, wide 4-wall bone defects or cup-like defects, D3, wide 3-wall or 2-wall defects) around implants were evenly distributed. In the two-dimensional classification system of implant fracture, F1D1 (31.3%) and F2D2 (25%) were the most frequent. There was a significant positive correlation between F1 and D1 (r=0.592, P < 0.001), a significant positive correlation between F2 and D2 (r=0.352, P=0.048), and a significant negative correlation between F1 and D2 (r=-0.465, P=0.007). The most common treatment for implant fracture was implant removal + guided bone regeneration(GBR) + delayed implant (65.6%), followed by implant removal + simultaneous implant (18.8%). F1D1 type was significantly related to the treatment strategy of implant removal + simultaneous implantation (r=0.367, P=0.039). On this basis, the decision tree of implant fracture treatment was summarized. Conclusion: The new two-dimensional classification of implant fracture is suitable for clinical application, and can provide guidance and reference for clinical treatment of implant fracture.

Key words: Dental implants, Implant fracture, Treatment decision

CLC Number: 

  • R783

Figure 1

The diagram, clinical photos and peri-apical radiographs of the two-dimensional clinical classification of fractured implants From left to right: F1, vertical fracture of implant neck; F2, horizontal fracture of implant neck; F3, deep horizontal fracture of implant body; D1, no bone defect or narrow infrabony defects; D2, wide 4-wall bone defects or cup-like defects; D3, wide 3-wall or 2-wall defects. From top to bottom: the diagram, clinical photos and peri-apical radiograph."

Figure 2

Two clinical situations on the two-dimensional clinical classification of fractured implants A, the clinical photograph of the implant fracture morphology of F1D1 type; B, the clinical photograph of the bone defect of F1D1 type; C, the peri-apical radiograph of F1D1 type; D, the clinical photograph of the implant fracture morphology of F2D2 type; E, the clinical photograph of the bone defect of F2D2 type; F, the peri-apical radiograph of F2D2 type."

Table 1

The characteristics of 32 fractrued implants in 27 patients"

Implant
numner
Gender Age/
years
Fractured
implant
position
Implant brand Implant
diameter/mm
Time of the
implant insertion
Time of the
implant fracture
Type of the
implant fracture
Type of the
bone defect
Treatment
decision of
the fractrued
implant
1 Male 70 26 Camlog 5.00 2004-07 2015-05 F1 D1 Decision 2
2 Female 48 26 Nobel replace 4.30 2011-01 2016-07 F1 D1 Decision 2
3 Female 63 36 Nobel replace 4.30 2012-09 2017-09 F1 D1 Decision 2
4 Female 63 37 Nobel replace 4.30 2012-09 2017-10 F1 D1 Decision 2
5 Male 51 46 Nobel replace 4.30 2011-04 2018-02 F1 D1 Decision 3
6 Male 70 25 Camlog 3.80 2004-07 2015-09 F1 D1 Decision 3
7 Male 55 36 Camlog 3.80 2003-02 2015-12 F1 D1 Decision 2
8 Female 35 16 Ankylos 3.50 2010-03 2018-07 F1 D1 Decision 2
9 Female 62 26 Camlog 3.80 2014-09 2018-08 F1 D1 Decision 2
10 Male 46 16 Nobel replace 4.30 2012-03 2019-01 F1 D1 Decision 2
11 Male 65 26 Camlog 5.00 2004-07 2015-09 F1 D2 Decision 2
12 Female 62 37 Camlog 5.00 2014-10 2018-08 F1 D2 Decision 2
13 Male 46 46 Nobel replace 4.30 2005-04 2014-03 F1 D2 Decision 2
14 Male 47 36 Ankylos 3.50 2010-06 2015-03 F1 D2 Decision 2
15 Female 74 36 Nobel replace 4.30 2006-11 2014-10 F1 D3 Decision 2
16 Female 57 36 Nobel replace 4.30 2005-07 2016-09 F1 D3 Decision 2
17 Male 31 46 Ankylos 3.50 2011-03 2018-01 F2 D1 Decision 2
18 Male 53 26 Nobel replace 4.50 2009-02 2018-08 F2 D2 Decision 4
19 Male 54 15 Ankylos 3.50 2011-07 2019-03 F2 D2 Decision 2
20 Male 54 16 Ankylos 3.50 2011-07 2019-03 F2 D2 Decision 2
21 Male 62 37 Nobel replace 4.30 2010-09 2018-04 F2 D2 Decision 2
22 Male 57 46 Nobel replace 4.30 2011-07 2016-08 F2 D2 Decision 2
23 Male 53 27 Nobel replace 4.50 2003-04 2016-08 F2 D2 Decision 2
24 Male 79 24 Ankylos 3.50 2009-10 2019-06 F2 D2 Decision 3
25 Male 55 36 Branemark 3.75 2003-11 2015-12 F2 D2 Decision 2
26 Female 67 14 Ankylos 3.50 2010-08 2016-09 F2 D3 Decision 2
27 Female 67 26 Ankylos 3.50 2010-08 2012-06 F2 D3 Decision 2
28 Male 68 36 Ankylos 3.50 2011-09 2019-01 F2 D3 Decision 2
29 Male 43 36 Ankylos 3.50 2008-02 2015-03 F2 D3 Decision 2
30 Male 51 35 Nobel replace 4.30 2011-11 2018-12 F3 D1 Decision 5
31 Male 64 46 Thommen element 4.50 2012-03 2019-06 F3 D2 Decision 2
32 Female 56 36 Branemark 3.75 1995-07 2010-09 F3 D3 Decision 2

Figure 3

The treatment process and effect of the treatment decision 1: remove the fractured implant and insert a new implant simutaniously According to the clinical situation (A) and the peri-apical radiograph evaluation (B), the fracture type of the implant was F1D1. Use a fine fissure bur to remove the fractured implant and avoid the bone loss around the implant (C). Insert a new implant with larger diameter (Thommen SPI contact 6.0 mm×11 mm) simutaniously (D, E). The peri-apical radiograph evaluation after 3 years showed the treatment result was stable (F)."

Figure 4

The treatment process and effect of the treatment decision 2: Remove the fractured implant, finish guided bone regeneration simutaniously, and re-implant after 6 to 8 months According to the clinical situation (B) and the peri-apical radiograph evaluation (A), the fracture type of the implant was F3D3. Use a fine fissure bur to remove the fractured implant (C). Guided bone regeneration was done simutaniously (D). After 6 months, the soft tissue was healed (E) and the bone was repaired (F). A new implant (Thommen SPI contact 4.3 mm×12.5 mm) inserted (G, H). The peri-apical radiograph after 3 years showed the treatment effect was stable (I)."

Figure 5

The treatment decision flow based on the new two-dimentional classification of 32 fractured implants in this paper Type of the implant fracture: F1, vertical fracture of implant neck; F2, horizontal fracture of implant neck; F3, deep horizontal fracture of implant body. Type of the bone defect: D1, no bone defect or narrow infrabony defects; D2, wide 4-wall bone defects or cup-like defects; D3, wide 3-wall or 2-wall defects. Treatment decision: Decision 1, remove the fractured implant and insert a new implant simutaniously; Decision 2, remove the fractured implant, finish guided bone regeneration simutaniously, and re-implant after 6-8 months; Decision 3, remove the fractured implant, and insert a new implant in other sites; Decision 4, remove the fractured implant, restore with the traditional method (fixed partial denture or removable partial denture); Decision 5, embed the implant broken end."

[1] Albrektsson T, Zarb GA, Worthington P, et al. The long-term efficacy of currently used dental implants: A review and proposed criteria of success[J]. Int J Oral Maxillofac Implants, 1986, 1(1):11-25.
[2] 林野, 李健慧, 邱立新. 口腔种植修复临床效果十年回顾研究[J]. 中华口腔医学杂志, 2006, 41(3):131-135.
[3] Berglundh T, Persson L, Bjorn K. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years[J]. J Clin Periodontol, 2002, 29(Suppl 3):197-212
doi: 10.1034/j.1600-051X.29.s3.12.x
[4] Adell R, Lekholm U, Rockler B, et al. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw[J]. Int J Oral Surg, 1981, 10(6):387-416.
pmid: 6809663
[5] Rangert B. Force and moments on branemark implants[J]. Int J Oral Maxillofac Implants, 1989, 4(3):241-247.
[6] Takeuchi K, Ohara T, Furuta M, et al. Tooth loss and risk of dementia in the community: The hisayama study[J]. J Am Geriatr Soc, 2017, 65(5):95-100.
doi: 10.1111/jgs.14791 pmid: 28272750
[7] Lee JH, Kin YT, Jeong SN, et al. Incidence and pattern of implant fractures: A long-term follow-up multicenter study[J]. Clin Oral Implants Res, 2018, 20(4):463-469.
[8] Misch CE, Strong JT, Bidez MW. Dental implant prosthetics[M]. St. Louis Missouri: Mosby, 2015: 293-314.
[9] Chrcanovic BR, Kisch J, Albrektsson T, et al. Factors influencing the fracture of dental implants[J]. Clin Implant Dent Relat Res, 2017, 20(1):58-67.
doi: 10.1111/cid.2018.20.issue-1
[10] Eckert SE, Salinas TJ, Aka K. Dental implant complications: Etiology, prevention, and treatment, 2[M]. Hoboken New Jersey: John Wiley & Sons, Ltd, 2015: 132-144.
[11] Alkharrat AR, Schmitter M, Rues S, et al. Fracture behavior of all-ceramic, implant-supported, and tooth-implant-supported fixed dental prostheses[J]. Clin Oral Investig, 2018, 22(4):1663-1673.
doi: 10.1007/s00784-017-2233-9
[12] Gealh WC, Valéria M, Barbi F, et al. Osseointegrated implant fracture: Causes and Treatment[J]. J Oral Implantol, 2011, 37(4):499-503.
doi: 10.1563/AAID-JOI-D-09-00135.1
[13] 张磊, 冯海兰. 种植固定修复后机械并发症的预防和处理[J]. 中华口腔医学杂志, 2016, 51(1):10-14.
[14] Schwarz MS. Mechanical complications of dental implants[J]. Clin Oral Implants Res, 2000, 11(Suppl 1):156-158.
doi: 10.1034/j.1600-0501.2000.011S1156.x
[15] 尉华杰, 朱一博, 王兴. 19枚种植体负重不同时间后折裂折断的临床分析[J]. 中华口腔医学杂志, 2018, 53(12):815-820.
[16] Quek HC, Tan KB, Nicholls JI. Load fatigue performance of four implant-abutment interface designs: Effect of torque level and implant system[J]. Int J Oral Maxillofac Implants, 2008, 23(2):253-262.
[17] Wiskott HWA, Jaquet R, Scherrer SS, et al. Resistance of internal-connection implant connectors under rotational fatigue loading[J]. Int J Oral Maxillofac Implants, 2007, 22(2):249-257.
[18] Shemtov-Yona K, Rittel D, Machtei EE, et al. Effect of dental implant diameter on fatigue performance. Part Ⅱ: Failure analysis[J]. Clin Implant Dent Relat Res, 2014, 16(2):178-184.
doi: 10.1111/cid.2014.16.issue-2
[19] Gratton DG, Aquilino SA, Stanford CM. Micromotion and dynamic fatigue properties of the dental implant-abutment interface[J]. J Prosthet Dent, 2001, 85(1):47-52.
pmid: 11174678
[20] Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Branemark system[J]. Clin Oral Implants Res, 2010, 3(3):104-111.
doi: 10.1034/j.1600-0501.1992.030302.x
[21] Morgan MJ, James DF, Pilliar RM. Fractures of the fixture component of an osseointegrated implant[J]. Int J Oral Maxillofac Implants, 1993, 8(4):409-414.
[22] Silva NR, Nourian P, Coelho PG, et al. Impact fracture resistance of two titanium-abutment systems versus a single-piece ceramic implant[J]. Clin Implant Dent Relat Res, 2011, 13(2):168-173.
doi: 10.1111/cid.2011.13.issue-2
[23] Steinebrunner L, Wolfart S, Ludwig K, et al. Implant-abutment interface design affects fatigue and fracture strength of implants[J]. Clin Oral Implants Res, 2009, 19(12):1276-1284.
doi: 10.1111/clr.2008.19.issue-12
[24] Rangert B. Bending overload and implant fracture: a retrospective clinical analysis[J]. Int J Oral Maxillofac Implants, 1995, 10(3):326-334.
[25] Muroff F, Fredrick I. Removal and replacement of a fractured dental implant: case report[J]. Implant Dent, 2003, 12(3):206-210.
pmid: 14560479
[26] Balshi TJ, Hernandez FE, Pryszlak DC, et al. An analysis and management of fractured implants: A clinical report[J]. Int J Oral Maxillofac Implants, 1996, 11(5):660-666.
[1] LI Peng,PIAO Mu-zi,HU Hong-cheng,WANG Yong,ZHAO Yi-jiao,SHEN Xiao-jing. Radiography study on osteotome sinus floor elevation with placed implant simultaneously with no graft augmentation [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 95-101.
[2] Zhong ZHANG,Huan-xin MENG,Jie HAN,Li ZHANG,Dong SHI. Effect of vertical soft tissue thickness on clinical manifestation of peri-implant tissue in patients with periodontitis [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 332-338.
[3] Chun-ping LIN,Song-he LU,Jun-xin ZHU,Hong-cheng HU,Zhao-guo YUE,Zhi-hui TANG. Influence of thread shapes of custom-made root-analogue implants on stress distribution of peri-implant bone: A three-dimensional finite element analysis [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1130-1137.
[4] Qian WANG,Dan LI,Zhi-hui TANG. Sinus floor elevation and simultaneous dental implantation: A long term retrospective study of sinus bone gain [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 925-930.
[5] Xiao-qian LIU,Qiu-wen CHEN,Hai-lan FENG,Bing WANG,Jian QU,Zhen SUN,Mo-di HENG,Shao-xia PAN. Oral hygiene maintenance of locator attachments implant overdentures in edentulous population: A longitudinal study [J]. Journal of Peking University(Health Sciences), 2019, 51(1): 136-144.
[6] Zhi-yong△ ZHANG,Tian MENG,Quan CHEN,Wen-shu LIU,Yu-huan CHEN. Retrospective analysis of early dental implant failure [J]. Journal of Peking University(Health Sciences), 2018, 50(6): 1088-1091.
[7] LIU Jing-yin, CHEN Fei, GE Yan-jun, WEI Ling, PAN Shao-xia, FENG Hai-lan. Influence of implants prepared by selective laser melting on early bone healing [J]. Journal of Peking University(Health Sciences), 2018, 50(1): 117-122.
[8] LIANG Nai-wen, SHI Lei,HUANG Ying,DENG Xu-liang. Role of different scale structures of titanium implant in the biological behaviors of human umbilical vein endothelial cells [J]. Journal of Peking University(Health Sciences), 2017, 49(1): 43-048.
[9] LI Bei-bei, LIN Ye, CUI Hong-yan, HAO Qiang, XU Jia-bin, DI Ping. Clinical evaluation of “All-on-Four” provisional prostheses reinforced with  carbon fibers [J]. Journal of Peking University(Health Sciences), 2016, 48(1): 133-137.
[10] CUI Hong-Yan, DI Ping, LI Jian-Hui, LIN Ye, LIU Rong-Rong. Application of spark erosion technology in manufacture of implant prosthesis [J]. Journal of Peking University(Health Sciences), 2015, 47(2): 336-339.
[11] HAN Jie, CHEN Zhi-Bin, LI Wei, MENG Huan-Xin. Determination of bone metabolic marker levels in perio-implant crevicular fluid and analysis of dental implants stability by resonance frequency in the early stage of healing [J]. Journal of Peking University(Health Sciences), 2015, 47(1): 37-41.
[12] WU Min-Jie, ZHANG Xiang-Hao, ZOU Li-Dong, LIANG Feng. Clinical observation of the reliability of gingival contour by using temporary crown after loading 1 year [J]. Journal of Peking University(Health Sciences), 2014, 46(6): 954-957.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Journal of Peking University(Health Sciences), 2001, 33(1): 66 -69 .
[2] . [J]. Journal of Peking University(Health Sciences), 2010, 42(2): 225 -227 .
[3] . [J]. Journal of Peking University(Health Sciences), 2003, 35(3): 324 -328 .
[4] . [J]. Journal of Peking University(Health Sciences), 2010, 42(4): 451 -453 .
[5] . [J]. Journal of Peking University(Health Sciences), 2006, 38(1): 6 -7 .
[6] . [J]. Journal of Peking University(Health Sciences), 2011, 43(2): 228 -233 .
[7] WANG Cheng, ZHAO Ran, ZHANG Guo-An. Pathological changes in different parts of the larynx in canines following laryngeal burns induced by inhalation of hot air at various temperatures[J]. Journal of Peking University(Health Sciences), 2014, 46(5): 771 -776 .
[8] SUN Ke-Xin, LIU Zhi, CAO Ya-Ying, JUAN Juan, XIANG Xiao, YANG Cheng, HUANG Shao-Ping, LIU Xiao-Fen, LI Na, TANG Xun, LI Jin, WU Tao, CHEN Da-Fang, HU Yong-Hua- . Relationship between brachial-ankle pulse wave velocity and glycemic control of type 2 diabetes mellitus patients in Beijing community population[J]. Journal of Peking University(Health Sciences), 2015, 47(3): 431 -436 .
[9] . [J]. Journal of Peking University(Health Sciences), 2015, 47(6): 1050 -1052 .
[10] QIAO Di, DONG Yan-mei, GAO Xue-jun. In vitro study of biological characteristics of new retrograde filling materials iRoot[J]. Journal of Peking University(Health Sciences), 2016, 48(2): 324 -329 .