Journal of Peking University (Health Sciences) ›› 2024, Vol. 56 ›› Issue (4): 610-616. doi: 10.19723/j.issn.1671-167X.2024.04.011

Previous Articles     Next Articles

Association between the triglyceride-glucose index and the incidence of nephrolithiasis in male individuals

Shengqi ZHENG1,Tianchi HUA1,Guicao YIN1,Wei ZHANG1,Ye YAO2,*(),Yifan LI1,*()   

  1. 1. Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, Jiangsu, China
    2. Department of Hernia and Pediatric Surgery, Northern Jiangsu People's Hospital, Yangzhou 225001, Jiangsu, China
  • Received:2024-03-15 Online:2024-08-18 Published:2024-07-23
  • Contact: Ye YAO,Yifan LI E-mail:821301725@qq.com;yfli@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(82002675);Jiangsu Natural Science Research of Colleges and Universities-General Project(20KJB320014);Jiangsu Science and Technology Program-Youth Fund Project(BK2020938)

RICH HTML

  

Abstract:

Objective: To analyze the association between the triglyceride-glucose (TyG) index and the risk of nephrolithiasis across various demographic and clinical subgroups, aiming to enhance early diagnosis and treatment of nephrolithiasis and promote personalized care in diverse populations. Methods: This cross-sectional study analyzed the medical records of 84 968 adults, stratified into three categories (low, middle, high) according to their TyG index scores. To evaluate the association between the TyG index and nephrolithiasis risk, multivariable Logistic regression models were employed, adjusting for potential confounders. Additionally, piecewise linear regression models were used to investigate the non-linear dynamics of the TyG index's relationship with nephrolithiasis risk. Subgroup analyses were performed to explore variations in the effects of the TyG index across different demographic and clinical populations. Results: Increasing TyG index was associated with a higher risk of nephrolithiasis, rising from 4.36% in the low group to 8.96% in the high group (P < 0.001). In adjusted models, males in the middle and high TyG index categories demonstrated significantly elevated risks of nephrolithiasis, with odds ratios of 1.18 (95%CI: 1.07-1.31, P=0.002) and 1.29 (95%CI: 1.15-1.45, P < 0.001), respectively. Conversely, in females, the association was not statistically significant post-adjustment (OR=0.98, 95%CI: 0.82-1.16, P=0.778). Among males, for each unit increment in the TyG index below the critical threshold of 8.98, there was a notable 40% escalation in the risk of developing nephrolithiasis (OR=1.40, 95%CI: 1.24-1.58, P < 0.001). Surpassing this threshold, the TyG index no longer conferred a significant increase in risk (OR=0.91, 95%CI: 0.78-1.06, P=0.24). Subgroup analyses indicated that this association remained stable regardless of age, BMI, or hypertension status. Conclusion: The TyG index is positively associated with the risk of nephrolithiasis in males, demonstrating a nonlinear dose-response relationship that becomes especially pronounced at certain index levels. This biomarker could potentially serve as a valuable clinical tool for identifying males who are at a high risk of developing nephrolithiasis, thereby enabling targeted preventive strategies. Further research is urgently needed to explore the underlying mechanisms and to verify the applicability of these results across different populations.

Key words: Nephrolithiasis, Triglyceride-glucose index, Metabolic syndrome, Insulin resistance

CLC Number: 

  • R692.4

Figure 1

Flowchart of sample selection"

Table 1

Baseline characteristics of the study population by triglyceride-glucose (TyG) index tertiles"

Characteristics Low TyG index
(n= 28 248)
Middle TyG index
(n=27 958)
High TyG index
(n=28 762)
P
Age/years, $\bar x \pm s$ 42.78±13.90 47.96±14.43 49.06±13.22 < 0.001
Gender, n(%) < 0.001
  Female 18 023 (63.80) 11 804 (42.22) 7 418 (25.79)
  Male 10 225 (36.20) 16 154 (57.78) 21 344 (74.21)
Nephrolithiasis, n(%) < 0.001
  No 27 016 (95.64) 26 150 (93.53) 26 184 (91.04)
  Yes 1 232 (4.36) 1 808 (6.47) 2 578 (8.96)
Hypertension, n(%) < 0.001
  No 23 609 (83.58) 18 757 (67.09) 15 093 (52.48)
  Yes 4 639 (16.42) 9 201 (32.91) 13 669 (47.52)
BMI category, n(%) < 0.001
  Normal 21 087 (74.65) 13 808 (49.39) 8 140 (28.30)
  Overweight 6 045 (21.40) 10 793 (38.61) 13 900 (48.33)
  Obesity 1 116 (3.95) 3 356 (12.00) 6 721 (23.37)
BMI/(kg/m2), $\bar x \pm s$ 22.26±2.95 24.25±3.25 25.87±3.25 < 0.001
FBG/(mmol/L), $\bar x \pm s$ 5.00±0.45 5.24±0.50 5.46±0.57 < 0.001
Cr/(μmol/L), $\bar x \pm s$ 61.67±18.07 67.17±18.78 70.91±20.43 < 0.001
TC/(mmol/L), $\bar x \pm s$ 4.53±0.82 4.87±0.87 5.17±0.95 < 0.001
TG/(mmol/L), $\bar x \pm s$ 0.77±0.18 1.34±0.23 2.93±1.86 < 0.001
HDL-C/(mmol/L), $\bar x \pm s$ 1.53±0.33 1.32±0.29 1.12±0.24 < 0.001
LDL-C/(mmol/L), $\bar x \pm s$ 2.52±0.66 2.89±0.71 2.90±0.78 < 0.001
SU/(μmol/L), $\bar x \pm s$ 298.77±77.09 340.55±84.22 386.92±89.47 < 0.001

Table 2

Association between triglyceride-glucose (TyG) index and risk of nephrolithiasis"

Items Model 1 Model 2 Model 3
OR (95%CI) P OR (95%CI) P OR (95%CI) P
Female
TyG index 1.25 (1.14, 1.38) < 0.001 1.09 (0.97,
1.22)
0.150 0.98 (0.82, 1.16) 0.778
TyG index tertile
  Low Reference Reference Reference
  Middle 1.12 (0.99, 1.28) 0.081 1.00 (0.87, 1.15) 0.998 0.91 (0.78, 1.06) 0.218
  High 1.34 (1.16, 1.54) < 0.001 1.08 (0.92, 1.27) 0.362 0.91 (0.74, 1.13) 0.405
P for trend < 0.001 0.406 0.430
Male
TyG index 1.34 (1.27, 1.40) < 0.001 1.19 (1.13, 1.25) < 0.001 1.19 (1.08, 1.30) < 0.001
TyG index tertile
  Low Reference Reference Reference
  Middle 1.33 (1.21, 1.46) < 0.001 1.20 (1.09, 1.32) < 0.001 1.18 (1.07, 1.31) 0.002
  High 1.67 (1.52, 1.82) < 0.001 1.38 (1.26, 1.51) < 0.001 1.29 (1.15,
1.45)
< 0.001
P for trend < 0.001 < 0.001 < 0.001

Figure 2

Impact of gender differences on the relationship between triglyceride-glucose index (TyG) index and nephrolithiasis risk A, the nonlinear relationship between the TyG index and the risk of nephrolithiasis in the male population; B, the linear relationship between the TyG index and the risk of nephrolithiasis in the female population. The solid black line represents the estimated relationship, with the shades of blue indicating the 95% confidence intervals."

Table 3

The result of the two-piecewise linear regression model"

Outcome: Nephrolithiasis OR (95%CI) P
Female
Fitting model by standard linear regression 0.98 (0.82, 1.16) 0.778
Inflection point of TyG index 8.99
  <8.99 0.90 (0.75,
1.09)
0.283
  ≥8.99 1.43 (0.95, 2.15) 0.086
Male
Fitting model by standard linear regression 1.19 (1.08, 1.30) < 0.001
Inflection point of TyG index 8.98
  <8.98 1.40 (1.24, 1.58) < 0.001
  ≥8.98 0.91 (0.78,
1.06)
0.240
P for Log-likelihood ratio test Female: 0.048, Male: < 0.001

Table 4

Stratified subgroup analysis of the association between triglyceride-glucose (TyG) index and risk of nephrolithiasis by gender"

Items Male Female
OR (95%CI) P P interaction OR (95%CI) P P interaction
Age/years 0.174 0.727
  <60 1.16 (1.05,
1.27)
0.002 1.01 (0.85, 1.20) 0.932
  ≥60 1.29 (1.10, 1.51) 0.002 1.07 (0.76, 1.50) 0.700
Hypertension 0.413 0.187
  No 1.20 (1.07, 1.35) 0.002 0.91 (0.75, 1.10) 0.316
  Yes 1.13 (1.01, 1.27) 0.032 1.13 (0.84, 1.53) 0.418
BMI category 0.104 0.196
  Normal 1.33 (1.12, 1.58) 0.001 1.02 (0.82, 1.25) 0.886
  Overweight 1.20 (1.06, 1.37) 0.005 0.79 (0.57, 1.08) 0.142
  Obesity 1.00 (0.83, 1.22) 0.960 1.35 (0.79, 2.31) 0.278
1 Hill AJ , Basourakos SP , Lewicki P , et al. Incidence of kidney stones in the united states: The continuous national health and nutrition examination survey[J]. J Urol, 2022, 207 (4): 851- 856.
doi: 10.1097/JU.0000000000002331
2 Haas CR , Li G , Hyams ES , et al. Delayed decompression of obstructing stones with urinary tract infection is associated with increased odds of death[J]. J Urol, 2020, 204 (6): 1256- 1262.
doi: 10.1097/JU.0000000000001182
3 Khan SR , Pearle MS , Robertson WG , et al. Kidney stones[J]. Nat Rev Dis Primers, 2016, 2, 16008.
doi: 10.1038/nrdp.2016.8
4 Peerapen P , Thongboonkerd V . Kidney stone prevention[J]. Adv Nutr, 2023, 14 (3): 555- 569.
doi: 10.1016/j.advnut.2023.03.002
5 Fritz J , Bjørge T , Nagel G , et al. The triglyceride-glucose index as a measure of insulin resistance and risk of obesity-related cancers[J]. Int J Epidemiol, 2020, 49 (1): 193- 204.
doi: 10.1093/ije/dyz053
6 Lee SH , Park SY , Choi CS . Insulin resistance: From mechanisms to therapeutic strategies[J]. Diabetes Metab J, 2022, 46 (1): 15- 37.
doi: 10.4093/dmj.2021.0280
7 Kim S , Chang Y , Jung HS , et al. Glycemic status, insulin resistance, and the risk of nephrolithiasis: A cohort study[J]. Am J Kidney Dis, 2020, 76 (5): 658- 668. e1.
doi: 10.1053/j.ajkd.2020.03.013
8 Huo RR , Liao Q , Zhai L , et al. Interacting and joint effects of triglyceride-glucose index (TyG) and body mass index on stroke risk and the mediating role of TyG in middle-aged and older Chinese adults: A nationwide prospective cohort study[J]. Cardiovasc Diabetol, 2024, 23 (1): 30.
doi: 10.1186/s12933-024-02122-4
9 Xu L , Wu M , Chen S , et al. Triglyceride-glucose index associates with incident heart failure: A cohort study[J]. Diabetes Metab, 2022, 48 (6): 101365.
doi: 10.1016/j.diabet.2022.101365
10 Tao LC , Xu JN , Wang TT , et al. Triglyceride-glucose index as a marker in cardiovascular diseases: Landscape and limitations[J]. Cardiovasc Diabetol, 2022, 21 (1): 68.
doi: 10.1186/s12933-022-01511-x
11 Xiang Q , Xu H , Zhan J , et al. Association between the trigly-ceride-glucose index and vitamin d status in type 2 diabetes mellitus[J]. Nutrients, 2023, 15 (3): 639.
doi: 10.3390/nu15030639
12 Wang S , Shi J , Peng Y , et al. Stronger association of triglyceride glucose index than the HOMA-IR with arterial stiffness in patients with type 2 diabetes: A real-world single-centre study[J]. Cardiovasc Diabetol, 2021, 20 (1): 82.
doi: 10.1186/s12933-021-01274-x
13 Zhang Q , Xiao S , Jiao X , et al. The triglyceride-glucose index is a predictor for cardiovascular and all-cause mortality in CVD patients with diabetes or pre-diabetes: Evidence from NHANES 2001-2018[J]. Cardiovasc Diabetol, 2023, 22 (1): 279.
doi: 10.1186/s12933-023-02030-z
14 艾比班木·艾则孜, 马依彤. 甘油三酯葡萄糖指数与心血管疾病及代谢综合征相关性的研究进展[J]. 中华老年多器官疾病杂志, 2022, 21 (4): 317- 320.
15 Jiang H , Li L , Liu J , et al. Triglyceride-glucose index as a novel biomarker in the occurrence of kidney stones: A cross-sectional population-based study[J]. Int J Gen Med, 2021, 14, 6233- 6244.
doi: 10.2147/IJGM.S334821
16 Qin Z , Zhao J , Geng J , et al. Higher triglyceride-glucose index is associated with increased likelihood of kidney stones[J]. Front Endocrinol (Lausanne), 2021, 12, 774567.
doi: 10.3389/fendo.2021.774567
17 Chen L , Zhang J , Shen K , et al. Kidney stones are associated with metabolic syndrome in a health screening population: A cross-sectional study[J]. Transl Androl Urol, 2023, 12 (6): 967- 976.
doi: 10.21037/tau-23-51
18 Ye Z , Wu C , Xiong Y , et al. Obesity, metabolic dysfunction, and risk of kidney stone disease: A national cross-sectional study[J]. Aging Male, 2023, 26 (1): 2195932.
doi: 10.1080/13685538.2023.2195932
19 Yuan S , Larsson SC . Assessing causal associations of obesity and diabetes with kidney stones using Mendelian randomization analysis[J]. Mol Genet Metab, 2021, 134 (1/2): 212- 215.
20 王昱, 张慧敏, 邓雪蓉, 等. 尿枸橼酸定量检测在原发性痛风患者肾结石诊断中的应用价值[J]. 北京大学学报(医学版), 2022, 54 (6): 1134- 1140.
21 Xu Z , Yao X , Duan C , et al. Metabolic changes in kidney stone disease[J]. Front Immunol, 2023, 14, 1142207.
doi: 10.3389/fimmu.2023.1142207
22 Deng J , Yu B , Chang Z , et al. Cerium oxide-based nanozyme suppresses kidney calcium oxalate crystal depositions via reversing hyperoxaluria-induced oxidative stress damage[J]. J Nanobiotechnology, 2022, 20 (1): 516.
doi: 10.1186/s12951-022-01726-w
23 Khan SR , Canales BK , Dominguez-Gutierrez PR . Randall's plaque and calcium oxalate stone formation: Role for immunity and inflammation[J]. Nat Rev Nephrol, 2021, 17 (6): 417- 433.
doi: 10.1038/s41581-020-00392-1
24 Flisiński M , Brymora A , Skoczylas-Makowska N , et al. Fructose-rich diet is a risk factor for metabolic syndrome, proximal tubule injury and urolithiasis in rats[J]. Int J Mol Sci, 2021, 23 (1): 203.
doi: 10.3390/ijms23010203
25 Xu JZ , Li C , Xia QD , et al. Sex disparities and the risk of urolithiasis: A large cross-sectional study[J]. Ann Med, 2022, 54 (1): 1627- 1635.
doi: 10.1080/07853890.2022.2085882
26 Zhao JV , Schooling CM . Sex-specific associations of insulin resistance with chronic kidney disease and kidney function: A bi-directional Mendelian randomisation study[J]. Diabetologia, 2020, 63 (8): 1554- 1563.
doi: 10.1007/s00125-020-05163-y
27 Emami E , Heidari-Soureshjani S , Mohammadjavad AO , et al. Obesity and the risk of developing kidney stones: A systematic review and meta-analysis[J]. Iran J Kidney Dis, 2023, 1 (2): 63- 72.
28 Inci M , Demirtas A , Sarli B , et al. Association between body mass index, lipid profiles, and types of urinary stones[J]. Ren Fail, 2012, 34 (9): 1140- 1143.
doi: 10.3109/0886022X.2012.713298
29 Kittanamongkolchai W , Mara KC , Mehta RA , et al. Risk of hypertension among first-time symptomatic kidney stone formers[J]. Clin J Am Soc Nephrol, 2017, 12 (3): 476- 482.
doi: 10.2215/CJN.06600616
30 Stamatelou K , Goldfarb DS . Epidemiology of kidney stones[J]. Healthcare, 2023, 11 (3): 424.
doi: 10.3390/healthcare11030424
[1] Huangda GUO,Hexiang PENG,Siyue WANG,Tianjiao HOU,Yixin LI,Hanyu ZHANG,Mengying WANG,Yiqun WU,Xueying QIN,Xun TANG,Jing LI,Dafang CHEN,Yonghua HU,Tao WU. A ssociations of short-term ambient particulate matter exposure and MTNR1B gene with triglyceride-glucose index: A family-based study [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 375-383.
[2] Meng-jie CUI,Qi MA,Man-man CHEN,Tao MA,Xin-xin WANG,Jie-yu LIU,Yi ZHANG,Li CHEN,Jia-nuo JIANG,Wen YUAN,Tong-jun GUO,Yan-hui DONG,Jun MA,Yi XING. Association between different growth patterns and metabolic syndrome in children and adolescents aged 7 to 17 years [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 415-420.
[3] Mei-ni ZUO,Yi-qing DU,Lu-ping YU,Xiang DAI,Tao XU. Correlation between metabolic syndrome and prognosis of patients with clear cell renal cell carcinoma [J]. Journal of Peking University (Health Sciences), 2022, 54(4): 636-643.
[4] Xiao-yuan ZHANG,Cheng-cheng GUO,Ying-xiang YU,Lan XIE,Cui-qing CHANG. Establishment of high-fat diet-induced obesity and insulin resistance model in rats [J]. Journal of Peking University (Health Sciences), 2020, 52(3): 557-563.
[5] Yong ZHANG,Chang LIU,Bin CHEN,Fan CHEN,Jin-yu DUAN,Meng-jun ZHANG,Jian JIAO. Associations of impaired glucose metabolism with chronic peridontitis in pre-diabetes patients [J]. Journal of Peking University(Health Sciences), 2020, 52(1): 71-76.
[6] ZHANG Jin, XING Yan, WANG Xin-Li, GUAN Yu-Hong, ZHANG Hui. Decreased insulin sensitivity in rat hepatocytes with intrauterine growth retardation and establishment of insulin resistance cell model in vitro [J]. Journal of Peking University(Health Sciences), 2014, 46(3): 464-468.
[7] LIU Miao, HE Yao, JIANG Bin, WU Lei, WANG Jian-Hua, YANG Shan-Shan, WANG Yi-Yan, LI Xiao-Ying. Relationship between brachial-ankle pulse wave velocity and metabolic syndrome among the elderly in a Beijing community and the gender difference [J]. Journal of Peking University(Health Sciences), 2014, 46(3): 429-434.
[8] YAN Rui, LUAN Qing-Xian, LIU Li-Sheng, WANG Xing-Yu, LI Peng, SHA Yue-Qin. Association between chronic periodontitis and metabolic syndrome related mitochondria single nucleotide polymorphism [J]. Journal of Peking University(Health Sciences), 2014, 46(2): 264-268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!