Journal of Peking University (Health Sciences) ›› 2021, Vol. 53 ›› Issue (2): 425-433. doi: 10.19723/j.issn.1671-167X.2021.02.033
Previous Articles Next Articles
HUANG Xin-rui1,LI Sha2,GAO Song2,Δ()
CLC Number:
[1] |
Bajaj C, Goswami S, Zhang Q. Detection of secondary and supersecondary structures of proteins from cryo-electron microscopy[J]. J Struct Biol, 2012,177(2):367-381.
pmid: 22186625 |
[2] | Merino F, Raunser S. Electron cryo-microscopy as a tool for structure-based drug development[J]. Angew Chem Int Edit, 2017,56(11):2846-2860. |
[3] | Armbruster BL, Kawasaki M, Kersker M, et al. Advanced instrumentation for high resolution transmission cryo-electron microscopy[J]. Biophys J, 2002,82(1):489a. |
[4] |
Zhang X, Zhou ZH. Limiting factors in atomic resolution cryo electron microscopy: No simple tricks[J]. J Struct Biol, 2011,175(3):253-263.
doi: 10.1016/j.jsb.2011.05.004 pmid: 21627992 |
[5] | Frank J. Single-particle cryo-electron microscopy: the path toward atomic resolution[M]. New Jersey: World Scientific, 2018. |
[6] |
Wagner J, Schaffer M, Fernandez-Busnadiego R. Cryo-electron tomography: the cell biology that came in from the cold[J]. Febs Lett, 2017,591(17):2520-2533.
doi: 10.1002/1873-3468.12757 pmid: 28726246 |
[7] |
Al-Amoudi A, Chang JJ, Leforestier A, et al. Cryo-electron microscopy of vitreous sections[J]. Embo J, 2014,23(18):3583-3588.
pmid: 15318169 |
[8] |
Cabra V, Samso M. Do’s and don’ts of cryo-electron microscopy: A primer on sample preparation and high quality data collection for macromolecular 3D reconstruction[J]. J Vis Exp, 2015(95):52311.
pmid: 25651412 |
[9] | Bert W, Slos D, Leroux O, et al. Cryo-fixation and associated developments in transmission electron microscopy: a cool future for nematology[J]. Nematology, 2016,18(1):1-14. |
[10] | Mielanczyk L, Matysiak N, Michalski M, et al. Closer to the native state. Critical evaluation of cryo-techniques for transmission electron microscopy: preparation of biological samples[J]. Folia Histochem Cyto, 2014,52(1):1-17. |
[11] |
Beck M, Baumeister W. Cryo-electron tomography: Can it reveal the molecular sociology of cells in atomic detail?[J]. Trends Cell Biol, 2016,26(11):825-837.
pmid: 27671779 |
[12] | Schmidt-Krey I, Cheng Y. Electron crystallography of soluble and membrane proteins: methods and protocols[M]. New York: Humana Press, Springer, 2013. |
[13] |
Cheng Y, Grigorieff N, Penczek PA, et al. A primer to single-particle cryo-electron microscopy[J]. Cell, 2015,161(3):438-449.
pmid: 25910204 |
[14] |
Dubochet J, Knapek E. Ups and downs in early electron cryo-microscopy[J]. PLoS Biol, 2018,16(4):e2005550.
pmid: 29672565 |
[15] | Welter K. Nobel Price for Chemistry cryo-electron microscopy: Cool images in 3D[J]. Chem Unserer Zeit, 2017,51(6):366-368. |
[16] | Mocibob M. Nobel Prize for Chemistry for 2017: cryo-electron microscopy[J]. Kem Ind, 2017,66(10):703-705. |
[17] | Neumann E, Estrozi LF, Effantin G, et al. The resolution revolution in cryo-electron microscopy[J]. Med Sci (Paris), 2017,33(12):1111-1117. |
[18] | Chiu W, Downing KH. Editorial overview: Cryo electron microscopy: Exciting advances in CryoEM herald a new era in structural biology[J]. Curr Opin Struc Biol, 2017, 46(8): iv-viii. |
[19] | Karuppasamy M, Nejadasl FK, Vulovic M, et al. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate[J]. J Synchrotron Radiat, 2011,18(3):398-412. |
[20] |
Marchin S, Putaux JL, Pignon F, et al. Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle X-ray scattering/ultrasmall-angle X-ray scattering[J]. J Chem Phys, 2007,126(4):045101.
pmid: 17286511 |
[21] | Wang K, Doerschuk PC. Understanding dynamics of biological macromolecular complexes by estimating a mechanical model via statistical mechanics from cryo electron microscopy images: proceedings of the 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro[C]. San Diego, CA: Biomedical Engineering, Cornell University, 2011: 1935-1938. |
[22] |
Vulovic M, Ravelli RBG, van Vliet LJ, et al. Image formation modeling in cryo-electron microscopy[J]. J Struct Biol, 2013,183(1):19-32.
pmid: 23711417 |
[23] | Doerschuk PC. Inverse problems for cryo electron microscopy of viruses: Randomly oriented projection images of random 3-D structures in noise[J]. Proc Spie, 2011,7873(4):565-568. |
[24] |
Penczek PA. Image restoration in cryo-electron microscopy[J]. Methods Enzymol, 2010,482:35-72.
pmid: 20888957 |
[25] | Lindert S, Stewart PL, Meiler J. Hybrid approaches: applying computational methods in cryo-electron microscopy[J]. Curr Opin Struc Biol, 2009,19(2):218-225. |
[26] | Hoffmann A, Perrier V, Grudinin S. A novel fast Fourier transform accelerated off-grid exhaustive search method for cryo-electron microscopy fitting[J]. J Appl Crystallogr, 2017,50(4):1036-1047. |
[27] |
McMullan G, Vinothkumar KR, Henderson R. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy[J]. Ultramicroscopy, 2015,158:26-32.
doi: 10.1016/j.ultramic.2015.05.017 pmid: 26103047 |
[28] | Jing ZC, Li M. A wavelet based alternative iteration method for the orientation refinement of cryo-electron microscopy 3D reconstruction[J]. Math Model Anal, 2015,20(3):396-408. |
[29] | Lee J, Zheng YL, Yin Z, et al. Classification of cryo electron microscopy images, noisy tomographic images recorded with unknown projection directions, by simultaneously estimating reconstructions and application to an assembly mutant of cowpea chlorotic mottle virus and portals of the bacteriophage P22[C]// San Diego, CA: Conference on Image Reconstruction from Incomplete Data VI, 2010: 78000R. 1-10. |
[30] | Zheng YL, Doerschuk PC. Algorithms for sorting and reconstructing heterogeneous nanoscale biological objects from cryo electron microscopy images[C]. 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009: 169-172. |
[31] | Mielikainen T, Ravantti J. Sinogram denoising of cryo-electron microscopy images[J]. Lect Notes Comput Sc, 2005,3483:1251-1261. |
[32] |
Maiorca M, Hanssen E, Kazmierczak E, et al. Improving the quality of electron tomography image volumes using pre-reconstruction filtering[J]. J Struct Biol, 2012,180(1):132-142.
pmid: 22683346 |
[33] |
Starosolski Z, Szczepanski M, Wahle M, et al. Developing a denoising filter for electron microscopy and tomography data in the cloud[J]. Biophys Rev, 2012,4(3):223-229.
pmid: 23066432 |
[34] |
Henderson R. Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise[J]. Proc Natl Acad Sci USA, 2013,110(45):18037-18041.
pmid: 24106306 |
[35] | Prust CJ, Wang Q, Doerschuk PC, et al. Highly scalable methods for exploiting a label with unknown location in order to orient a set of single-particle cryo electron microscopy images[J]. Proc Spie, 2012,8296(3):4. |
[36] |
Bhamre T, Zhang T, Singer A. Denoising and covariance estimation of single particle cryo-EM images[J]. J Struct Biol, 2016,195(1):72-81.
pmid: 27129418 |
[37] |
Sindelar CV, Grigorieff N. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter[J]. J Struct Biol, 2012,180(1):26-38.
pmid: 22613568 |
[38] | Fernandez-Leiro R, Scheres SHW. A pipeline approach to single-particle processing in RELION[J]. Acta Crystallogr D, 2017,73(Pt6):496-502. |
[39] |
Campbell MG, Cheng AC, Brilot AF, et al. Movies of ice-embedded particles enhance resolution in electron cryo-microscopy[J]. Structure, 2012,20(11):1823-1828.
pmid: 23022349 |
[40] | Shigematsu H, Sigworth FJ. Noise models and cryo-EM drift correction with a direct-electron camera[J]. Ultramicroscopy, 2013,131(8):61-69. |
[41] | Nejadasl FK, Karuppasamy M, Newman ER, et al. Non-rigid image registration to reduce beam-induced blurring of cryo-electron microscopy images[J]. J Synchrotron Radiat, 2013,20(1):58-66. |
[42] | Brown A, Long F, Nicholls RA, et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions[J]. Acta Crystallogr D, 2015,71(1):136-153. |
[43] | Jiang W, Baker ML, Wu Q, et al. Applications of a bilateral denoising filter in biological electron microscopy[J]. J Struct Biol, 2003,144(1):114-122. |
[44] | Asano S, Engel BD, Baumeister W. In situ cryo-electron tomography: A post-reductionist approach to structural biology[J]. J Mol Biol, 2016,428(2):332-343. |
[45] |
Evans JE, Hetherington C, Kirkland A, et al. Low-dose aberration corrected cryo-electron microscopy of organic specimens[J]. Ultramicroscopy, 2008,108(12):1636-1644.
doi: 10.1016/j.ultramic.2008.06.004 pmid: 18703285 |
[46] |
Burger V, Chennubhotla C. Nhs: Network-based hierarchical segmentation for cryo-electron microscopy density maps[J]. Biopolymers, 2012,97(9):732-741.
pmid: 22696408 |
[47] |
Anderson KL, Page C, Swift MF, et al. Marker-free method for accurate alignment between correlated light, cryo-light, and electron cryo-microscopy data using sample support features[J]. J Struct Biol, 2018,201(1):46-51.
doi: 10.1016/j.jsb.2017.11.001 pmid: 29113849 |
[48] |
Ali RA, Landsberg MJ, Knauth E, et al. A 3D image filter for parameter-free segmentation of macromolecular structures from electron tomograms[J]. PLoS One, 2012,7(3):e33697.
pmid: 22479430 |
[49] |
Grange M, Vasishtan D, Grunewald K. Cellular electron cryo tomography and in situ sub-volume averaging reveal the context of microtubule-based processes[J]. J Struct Biol, 2017,197(2):181-190.
pmid: 27374320 |
[50] |
Wan W, Briggs JAG. Cryo-electron tomography and subtomogram averaging[J]. Methods Enzymol, 2016,579:329-367.
pmid: 27572733 |
[51] |
Langlois R, Pallesen J, Ash JT, et al. Automated particle picking for low-contrast macromolecules in cryo-electron microscopy[J]. J Struct Biol, 2014,186(1):1-7.
doi: 10.1016/j.jsb.2014.03.001 pmid: 24607413 |
[52] | Kumar V, Heikkonen J, Engelhardt P, et al. Robust filtering and particle picking in micrograph images towards 3D reconstruction of purified proteins with cryo-electron microscopy[J]. J Struct Biol, 2004,145(1):41-51. |
[53] |
van der Heide P, Xu XP, Marsh BJ, et al. Efficient automatic noise reduction of electron tomographic reconstructions based on iterative median filtering[J]. J Struct Biol, 2007,158(2):196-204.
doi: 10.1016/j.jsb.2006.10.030 pmid: 17224280 |
[54] |
Baxter WT, Grassucci RA, Gao HX, et al. Determination of signal-to-noise ratios and spectral SNRs in cryo-EM low-dose imaging of molecules[J]. J Struct Biol, 2009,166(2):126-132.
doi: 10.1016/j.jsb.2009.02.012 pmid: 19269332 |
[55] |
Sindelar CV, Grigorieff N. An adaptation of the Wiener filter suitable for analyzing images of isolated single particles[J]. J Struct Biol, 2011,176(1):60-74.
pmid: 21757012 |
[56] |
Pantelic RS, Rothnagel R, Huang CY, et al. The discriminative bilateral filter: An enhanced denoising filter for electron microscopy data[J]. J Struct Biol, 2006,155(3):395-408.
doi: 10.1016/j.jsb.2006.03.030 pmid: 16774838 |
[57] |
Pantelic RS, Ericksson G, Hamilton N, et al. Bilateral edge filter: Photometrically weighted, discontinuity based edge detection[J]. J Struct Biol, 2007,160(1):93-102.
doi: 10.1016/j.jsb.2007.07.005 pmid: 17822922 |
[58] |
Wei DY, Yin CC. An optimized locally adaptive non-local means denoising filter for cryo-electron microscopy data[J]. J Struct Biol, 2010,172(3):211-218.
doi: 10.1016/j.jsb.2010.06.021 pmid: 20599508 |
[59] |
Wang J, Yin CC. A Zernike-moment-based non-local denoising filter for cryo-EM images[J]. Sci China Life Sci, 2013,56(4):384-390.
pmid: 23564187 |
[60] | Fernandez JJ, Li S. An improved algorithm for anisotropic nonli-near diffusion for denoising cryo-tomograms[J]. J Struct Biol, 2003,144(1):152-161. |
[61] |
Frangakis AS, Hegerl R. Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion[J]. J Struct Biol, 2001,135(3):239-250.
doi: 10.1006/jsbi.2001.4406 pmid: 11722164 |
[62] |
Zhong JM, Ning RL. Image denoising based on wavelets and multifractals for singularity detection[J]. IEEE Trans Image Process, 2005,14(10):1435-1447.
doi: 10.1109/tip.2005.849313 pmid: 16238050 |
[63] | Tian DZ, Ha MH. Applications of wavelet transform in medical image processing[C]// Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on. IEEE, 2004. |
[64] | Xie GH, Wang YL, Ming L. The application research of wavelet analysis in medical image processing[J]. Wavelet Analysis & Its Applications, 2003(1/2):751-756. |
[65] | Soumia SA, Messai Z, Ouahabi A, et al. Non parametric denoi-sing methods based on wavelets: Application to electron microscopy images in low exposure time[J]. AIP Conference Proceedings, 2015,1641(1):403-413. |
[66] | Moss WC, Haase S, Lyle JM, et al. A novel 3D wavelet-based filter for visualizing features in noisy biological data[J]. J Microsc-Oxford, 2005,219(2):43-49. |
[67] | Huang XR, Li S, Gao S. Applying a modified wavelet shrinkage filter to improve cryo-electron microscopy imaging[J]. J Comput Biol, 2018,25(9):1-9. |
[68] |
Huang X, Li S, Gao S. Exploring an optimal wavelet-based filter for cryo-ET imaging[J]. Sci Rep, 2018,8(1):2582.
pmid: 29416100 |
[1] | Yuxuan TIAN,Mingjian RUAN,Yi LIU,Derun LI,Jingyun WU,Qi SHEN,Yu FAN,Jie JIN. Predictive effect of the dual-parametric MRI modified maximum diameter of the lesions with PI-RADS 4 and 5 on the clinically significant prostate cancer [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 567-574. |
[2] | Liang LYU,Mingjin ZHANG,Aonan WEN,Yijiao ZHAO,Yong WANG,Jing LI,Gengchen YANG,Dawei LIU. Preliminary evaluation of chin symmetry with three dimentional soft tissue spatial angle wireframe template [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 106-110. |
[3] | Bochun MAO,Yajing TIAN,Xuedong WANG,Jing LI,Yanheng ZHOU. Soft and hard tissue changes of hyperdivergent class Ⅱ patients before and after orthodontic extraction treatment [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 111-119. |
[4] | Xiaotong LING,Liuyang QU,Danni ZHENG,Jing YANG,Xuebing YAN,Denggao LIU,Yan GAO. Three-dimensional radiographic features of calcifying odontogenic cyst and calcifying epithelial odontogenic tumor [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 131-137. |
[5] | Yi LIU,Chang-wei YUAN,Jing-yun WU,Qi SHEN,Jiang-xi XIAO,Zheng ZHAO,Xiao-ying WANG,Xue-song LI,Zhi-song HE,Li-qun ZHOU. Diagnostic efficacy of prostate cancer using targeted biopsy with 6-core systematic biopsy for patients with PI-RADS 5 [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 812-817. |
[6] | Chang-wei YUAN,De-run LI,Zhi-hua LI,Yi LIU,Gang-zhi SHAN,Xue-song LI,Li-qun ZHOU. Application of dynamic contrast enhanced status in multiparametric magnetic resonance imaging for prostatic cancer with PI-RADS 4 lesion [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 838-842. |
[7] | Zhan-yi ZHANG,Fan ZHANG,Ye YAN,Cai-guang CAO,Chang-jian LI,Shao-hui DENG,Yue-hao SUN,Tian-liang HUANG,Yun-he GUAN,Nan LI,Min LU,Zhen-hua HU,Shu-dong ZHANG. Near-infrared targeted probe designed for intraoperative imaging of prostatic neurovascular bundles [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 843-850. |
[8] | Zhuo-hua LIN,Ru-yi CAI,Yang SUN,Rong MU,Li-gang CUI. Methodology and clinical use of superb microvascular imaging in assessing micro-circulation changes of fingertips in systemic sclerosis [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 636-640. |
[9] | Ying LIU,Ran HUO,Hui-min XU,Zheng WANG,Tao WANG,Hui-shu YUAN. Correlations between plaque characteristics and cerebral blood flow in patients with moderate to severe carotid stenosis using magnetic resonance vessel wall imaging [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 646-651. |
[10] | Qiang FU,Guan-ying GAO,Yan XU,Zhuo-hua LIN,You-jing SUN,Li-gang CUI. Comparative study of ultrasound and magnetic resonance imaging in the diagnosis of asymptomatic anterosuperior acetabular labrum tears [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 665-669. |
[11] | Xiang LIU,Hui-hui XIE,Yu-feng XU,Xiao-dong ZHANG,Xiao-feng TAO,Lin LIU,Xiao-ying WANG. Value of artificial intelligence in the improvement of diagnostic consistency of radiology residents [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 670-675. |
[12] | Wen ZHANG,Xiao-jing LIU,Zi-li LI,Yi ZHANG. Effect of alar base cinch suture based on anatomic landmarks on the morphology of nasolabial region in patients after orthognathic surgery [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 736-742. |
[13] | Meng-en OU,Yun DING,Wei-feng TANG,Yong-sheng ZHOU. Three-dimensional finite element analysis of cement flow in abutment margin-crown platform switching [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 548-552. |
[14] | Li-jia MA,Pan-pan HU,Xiao-guang LIU. Spinal metastases combined with leptomeningeal metastasis: A case report [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 563-566. |
[15] | Ao-nan WEN,Wei LIU,Da-wei LIU,Yu-jia ZHU,Ning XIAO,Yong WANG,Yi-jiao ZHAO. Preliminary evaluation of the trueness of 5 chairside 3D facial scanning techniques [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 343-350. |
|