Journal of Peking University (Health Sciences) ›› 2021, Vol. 53 ›› Issue (4): 734-739. doi: 10.19723/j.issn.1671-167X.2021.04.019

Previous Articles     Next Articles

Analysis of surgical strategy of percutaneous endoscopic lumbar discectomy in young and middle-aged double-segment patients with lumbar disc herniation

YUE Lei,WANG Yue-tian,BAI Chun-bi,CHEN Hao,FU Hao-yong,YU Zheng-rong,LI Chun-de,SUN Hao-lin()   

  1. Department of 0rthopaedics,Peking University First Hospital,Beijing 100034, China
  • Received:2020-03-02 Online:2021-08-18 Published:2021-08-25
  • Contact: Hao-lin SUN E-mail:sunhaolin@vip.163.com

RICH HTML

  

Abstract:

Objective: To investigate clinical efficacy and safety of single and double segmental percutaneous lumbar discectomy for young and middle-aged patients with double-segment disc herniation. Methods: Retrospective analysis was undertaken for 32 young and middle-aged patients with percutaneous endoscopic lumbar discectomy (PELD) in the treatment of double-segment lumbar disc herniation from January 2015 to October 2018 in Peking University First Hospital. In the study, 18 cases were treated with single-segment treatment and 14 cases with double-segment treatment. Visual analogue score (VAS) and oswestry disability index (ODI) assessment were used to compare clinical symptom outcomes before surgery, 3 months after surgery and at the last follow-up. Macnab criteria were used to assess the patients’ overall satisfaction after surgery. Imaging parameters included lumbar lordosis, intervertebral height at each segment and endplate angle of lesion segment on the X-ray. And Michigan State University(MSU) rating and Pfirrmann scoring system were used to evaluate the grade of disc herniation and disc degeneration respectively on magnetic resonance imaging (MRI). The perioperative parameters included the surgeon, anesthesia method, operation time, postoperative hospital stay, postoperative bracing time and perioperative complications. Results: The mean follow-up time was (26.78±10.64) months. There was no significant difference in the follow-up time and baseline information between the two groups(P>0.05). ODI scores 3 months post-operatively and at the last follow-up were lower in the double segment (P<0.05). The ODI improvement was also more significant in the double-segment group at the last follow-up (P<0.05). There was no significant difference in radiographic parameters at baseline (P>0.05). MSU scale for the primary segment was significantly lowered after both operations (P<0.05). MSU scale for secondary segment was significantly lowered in double segment group but not in single segment group. Other imaging parameters were similar between the two groups (P>0.05). The operation time of the single-segment group was significantly shorter than that of the double-segment group(P<0.001). No perioperative complications were found in either group, but three patients underwent secondary lumbar surgery during the postoperative follow-up period in the single-segment group. Conclusion: For young and middle-aged patients with double-segment disc herniation, this study suggests double-segment PELD may be more advantageous than single-segment PELD in terms of asuring clinical efficacy without increasing perioperative risks.

Key words: Minimally invasive surgery, Discectomy, Double segment, Lumbar disc herniation

CLC Number: 

  • R681.5

Figure 1

X-ray parameter measurement diagram of lumbar spine α, lumbar lordosis; β, lesion segment endplate angle. Intervertebral space height=(a+b)/2."

Figure 2

Diagram of the Pfirrmann disc degeneration classification system classification based on structure, distribution of nucleus and annulus, signal intensity and disc height on T2 MRI seqeunce A,Pfirrmann I;B,Pfirrmann Ⅱ;C,Pfirrmann Ⅲ;D,Pfirrmann Ⅳ;E,PfirrmannⅤ."

Table 1

Comparison of baseline parameters and perioperative parameters between the two groups of patients"

Items Single segment group (n=18) Double segment group (n=14) P
Baseline parameter
Age/years, M(Q1, Q3) 39.50 (30.00, 46.25) 30.50 (28.00, 37.50) 0.077
Gender, male/female 12/6 9/5 1.000
Follow-up time/days, M(Q1, Q3) 26.00 (18.50, 35.75) 27.00 (21.00, 34.25) 0.955
BMI /(kg/m2), M(Q1, Q3) 24.33 (22.08, 24.90) 24.28 (22.39, 29.00) 0.587
ASA score, M(Q1, Q3) 1.00 (1.00, 2.00) 1.00 (1.00, 2.00) 0.667
Drinking, yes/no 7/11 4/10 0.712
Smoking, yes/no 6/12 3/11 0.694
Perioperative parameter
Surgeon, yes/no 11/7 9/5 1.000
Anesthesia method, intraspinal anesthesia/local anesthesia 15/3 12/2 1.000
Operation time/min, M(Q1, Q3) 102.50 (78.50, 126.50) 150.00 (133.25, 167.00) <0.001*
Postoperative time in hospital/d, M(Q1, Q3) 1.00 (1.00, 2.00) 1.00 (1.00, 1.25) 0.808
Postoperative bracing time/months, M(Q1, Q3) 2.00 (1.00, 3.00) 2.00 (1.75, 3.00) 0.837

Table 2

Comparison of VAS and ODI scores between two groups of patients at different follow-up time points"

Items Preoperative 3 months after
operation
Last follow-up Improvement of
3 months after
operation
Improvement of
last follow-up
P1 P2 P3
Single segment
group, M
(Q1, Q3)
VAS 6.00
(4.00, 6.00)
2.00
(2.00, 2.50)
2.00
(0.00, 2.00)
-0.67
(-0.69, -0.46)
-0.71
(-1.00, -0.63)
<0.001* <0.001 0.020*
ODI 0.38
(0.18, 0.76)
0.11
(0.04, 0.23)
0.06
(0.02, 0.15)
-0.68
(-0.89, -0.44)
-0.86
(-0.93, -0.53)
<0.001* <0.001 0.007*
Double segment
group, M
(Q1, Q3)
VAS 6.00
(4.00, 6.50)
2.00
(0.00, 2.00)
0.00
(0.00, 0.25)
-0.67
(-1.00, -0.63)
-1.00
(-1.00, -0.97)
0.001* 0.001* 0.014*
ODI 0.52
(0.33, 0.79)
0.09
(0.02, 0.19)
0.00
(0.00, 0.05)
-0.86
(-0.96, -0.54)
-1.00
(-1.00, -0.89)
0.001* 0.001* 0.013*
P VAS 0.722 0.071 0.059 0.091 0.099
ODI 0.338 0.398 0.041* 0.267 0.025*

Table 3

Comparison of preoperative and postoperative imaging parameters between the two groups of patients"

Items Single segment
group
(preoperative)
Double segment
group
(preoperative)
Single segment
group
(postoperative)
Double segment
group
(postoperative)
P1 P2 P3 P4
Lumbar lordosis 30.47
(24.14, 39.35)
31.90
(24.38,34.95)
30.04
(24.19, 39.35)
32.82
(26.05,44.05)
1.000 0.488 0.983 0.158
Lumbar lordosis
changes
4.18
(-2.31, 6.47)
2.75
(-2.43, 8.32)
0.925
Lesion segment
endplate angle
Major 7.55
(4.06, 10.85)
4.51
(3.38, 5.96)
7.54
(4.82, 9.40)
6.16
(1.59, 7.87)
0.116 0.125 0.679 0.875
Minor 9.27
(6.80, 14.08)
6.18
(4.23, 11.51)
10.93
(9.22, 12.03)
8.31
(5.39, 12.41)
0.145 0.235 0.711 0.300
Lesion segment
endplate angle
changes
Major 0.16
(-2.50, 2.23)
0.61
(-2.50, 2.23)
0.866
Minor 2.35
(0.11, 4.73)
1.74
(-2.18, 5.28)
0.837
Intervertebral height
of lesion segment
Major 1.50
(1.00, 2.00)
2.00
(1.00, 2.00)
1.00
(1.00, 1.00)
1.00
(1.00, 1.00)
0.319 0.896 0.008* 0.021*
Minor 1.50
(1.00, 2.00)
2.00
(1.00, 2.00)
1.00
(1.00, 1.00)
1.00
(1.00, 1.00)
0.512 0.613 0.014* 0.005*
Intervertebral height
changes
Major 0.05
(-1.29, 0.67)
0.04
(-1.34, 0.67)
0.896
Minor -0.37
(-1.12, 0.50)
-0.64
(-1.19, -.0.06)
0.639
Pfirrman grading Major 4.00
(3.75, 4.00)
3.50
(3.00, 4.25)
0.837
Minor 4.00
(3.00, 4.00)
3.50
(3.00, 4.00)
0.357
MSU grading Major 2.00
(2.00, 3.00)
2.00
(2.00, 3.00)
1.50
(1.00, 2.00)
1.00
(1.00, 2.00)
0.955 0.319 0.003* 0.012*
Minor 1.00
(1.00, 2.00)
2.00
(1.00, 2.00)
1.00
(1.00, 1.00)
1.00
(1.00, 2.00)
0.319 0.587 0.102 0.025*
MSU grading
changes
Major -1.00
(-1.00, 0.00)
-1.00
(-2.00, 0.00)
0.512
Minor 0.00
(-1.00, 0.00)
0.00
(-1.00, 0.00)
0.587
[1] Frymoyer JW, Pope MH, Clements JH, et al. Risk factors in low-back pain. An epidemiological survey [J]. J Bone Joint Surg Am, 1983, 65(2):213-218.
pmid: 6218171
[2] Andersson GB. Epidemiological features of chronic low-back pain [J]. Lancet, 1999, 354(9178):581-585.
pmid: 10470716
[3] Amin RM, Andrade NS, Neuman BJ. Lumbar disc herniation [J]. Curr Rev Musculoskelet Med, 2017, 10(4):507-516.
doi: 10.1007/s12178-017-9441-4 pmid: 28980275
[4] Lee DY, Ahn Y, Lee SH. Percutaneous endoscopic lumbar discectomy for adolescent lumbar disc herniation: surgical outcomes in 46 consecutive patients [J]. Mt Sinai J Med, 2006, 73(6):864-870.
[5] Forst R, Hausmann B. Nucleoscopy: a new examination technique [J]. Arch Orthop Trauma Surg, 1983, 101(3):219-221.
doi: 10.1007/BF00436774
[6] Jasper GP, Francisco GM, Telfeian AE. Clinical success of transforaminal endoscopic discectomy with foraminotomy: a retrospective evaluation [J]. Clin Neurol Neurosurg, 2013, 115(10):1961-1965.
doi: 10.1016/j.clineuro.2013.05.033
[7] Mysliwiec LW, Cholewicki J, Winkelpleck MD, et al. MSU classification for herniated lumbar discs on MRI: toward developing objective criteria for surgical selection [J]. Eur Spine J, 2010, 19(7):1087-1093.
doi: 10.1007/s00586-009-1274-4 pmid: 20084410
[8] Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration [J]. Spine (Phila Pa 1976), 2001, 26(17):1873-1878.
doi: 10.1097/00007632-200109010-00011
[9] Brayda-Bruno M, Tibiletti M, Ito K, et al. Advances in the diagnosis of degenerated lumbar discs and their possible clinical application [J]. Eur Spine J, 2014, 23(Suppl 3):S315-323.
[10] Colombier P, Clouet J, Hamel O, et al. The lumbar intervertebral disc: from embryonic development to degeneration [J]. Joint Bone Spine, 2014, 81(2):125-129.
doi: 10.1016/j.jbspin.2013.07.012 pmid: 23932724
[11] Shin KH, Chang HG, Rhee NK, et al. Revisional percutaneous full endoscopic disc surgery for recurrent herniation of previous open lumbar discectomy [J]. Asian Spine J, 2011, 5(1):1-9.
doi: 10.4184/asj.2011.5.1.1
[12] Weinstein JN, Tosteson TD, Lurie JD, et al. Surgical vs nono-perative treatment for lumbar disk herniation: the spine patient outcomes research trial (SPORT): a randomized trial [J]. JAMA, 2006, 296(20):2441-2450.
pmid: 17119140
[13] Osterman H, Seitsalo S, Karppinen J, et al. Effectiveness of microdiscectomy for lumbar disc herniation: a randomized controlled trial with 2 years of follow-up [J]. Spine (Phila Pa 1976), 2006, 31(21):2409-2414.
doi: 10.1097/01.brs.0000239178.08796.52
[14] Parker SL, Xu R, McGirt MJ, et al. Long-term back pain after a single-level discectomy for radiculopathy: incidence and health care cost analysis [J]. J Neurosurg Spine, 2010, 12(2):178-182.
doi: 10.3171/2009.9.SPINE09410
[15] 彭耀庆, 杨檑, 江皓. 显微内窥镜下治疗多节段腰椎间盘突出症的手术策略 [J]. 中国脊柱脊髓杂志, 2003, 13(2):79-81.
[16] Kleinig TJ, Brophy BP, Maher CG. Practical neurology-3: back pain and leg weakness [J]. Med J Aust, 2011, 195(8):454-457.
doi: 10.5694/mja2.2011.195.issue-8
[17] Beynon R, Hawkins J, Laing R, et al. The diagnostic utility and cost-effectiveness of selective nerve root blocks in patients consi-dered for lumbar decompression surgery: a systematic review and economic model [J]. Health Technol Assess, 2013, 17(19):1-88.
doi: 10.3310/hta17190 pmid: 23673151
[18] 阮狄克, 周鸿奇. 椎间盘摘除术对腰椎稳定性的影响 [J]. 中国脊柱脊髓杂志, 1993, 3(4):159-162.
[19] 关家文, 刘继财, 张洪涛, 等. 双节段腰椎间盘突出症的“责任靶点”诊断和内窥镜治疗 [J]. 中国矫形外科杂志, 2018, 26(11):967-971.
[20] Wilmink JT. The normal aging spine and degenerative spinal disease [J]. Neuroradiology, 2011, 53(Suppl 1):S181-183.
[21] Ekman P, Möller H, Shalabi A, et al. A prospective randomised study on the long-term effect of lumbar fusion on adjacent disc degeneration [J]. Eur Spine J, 2009, 18(8):1175-1186.
doi: 10.1007/s00586-009-0947-3 pmid: 19337757
[1] Wei ZHU,Bin ZHU,Xiao-guang LIU. Influential factors related to functional status after full-endoscopic lumbar discectomy [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 537-542.
[2] Ya-long QIAN,Shuai XU,Hai-ying LIU. Lower limb ischemia cured by stimulation electrode implantation assisted with microendoscopic discectomy system: A case report [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 378-381.
[3] LIU Hong, YUE Lei, CHEN Shun-lun, HU Bo, LI Chun-de△, YI Xiao-dong, LI Hong, LU Hai-lin, WANG Yu, YU Zheng-rong, SUN Hao-lin, WANG Shi-jun, ZHAO Yao, QI Long-tao, WANG Rui. Anterior cervical discectomy and fusion to treat cervical spondylosis with sympathetic symptoms#br# [J]. Journal of Peking University(Health Sciences), 2018, 50(2): 347-351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!