Journal of Peking University (Health Sciences) ›› 2021, Vol. 53 ›› Issue (6): 1163-1170. doi: 10.19723/j.issn.1671-167X.2021.06.026
Previous Articles Next Articles
WU Jing-yi1,2,LIN Yu1,LIN Ke1,HU Yong-hua1,3,KONG Gui-lan2,4,△()
CLC Number:
[1] |
Bin D, Youzhong A, Yan K, et al. Characteristics of critically ill patients in ICUs in mainland China[J]. Crit Care Med, 2013, 41(1):84-92.
doi: 10.1097/CCM.0b013e31826a4082 pmid: 23222268 |
[2] |
Milbrandt EB, Kersten A, Rahim MT, et al. Growth of intensive care unit resource use and its estimated cost in Medicare[J]. Crit Care Med, 2008, 36(9):2504-2510.
doi: 10.1097/CCM.0b013e318183ef84 pmid: 18679127 |
[3] | Tsai PF, Chen PC, Chen YY, et al. Length of hospital stay prediction at the admission stage for cardiology patients using artificial neural network[J]. J Healthc Eng, 2016, 2016:7035463. |
[4] |
Nassar AP, Caruso P. ICU physicians are unable to accurately predict length of stay at admission: A prospective study[J]. Int J Qual Health Care, 2016, 28(1):99-103.
doi: 10.1093/intqhc/mzv112 |
[5] |
Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology ccore (SAPSⅡ) based on a European/North American multicenter study[J]. JAMA, 1993, 270(24):2957-2963.
doi: 10.1001/jama.1993.03510240069035 |
[6] |
Zimmerman JE, Kramer AA, Mcnair DS, et al. Acute physiology and chronic health evaluation (APACHE) Ⅳ: Hospital mortality assessment for today’s critically ill patients[J]. Crit Care Med, 2006, 34(5):1297-1310.
pmid: 16540951 |
[7] |
Vasilevskis EE, Kuzniewicz MW, Cason BA, et al. Mortality probability model Ⅲ and simplified acute physiology scoreⅡassessing their value in predicting length of stay and comparison to APACHE Ⅳ[J]. Chest, 2009, 136(1):89-101.
doi: S0012-3692(09)60409-8 pmid: 19363210 |
[8] |
Zimmerman JE, Kramer AA, Mcnair DS, et al. Intensive care unit length of stay: Benchmarking based on acute physiology and chronic health evaluation (APACHE) Ⅳ[J]. Crit Care Med, 2006, 34(10):2517-2529.
pmid: 16932234 |
[9] |
Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model[J]. Int J Med Inform, 2019, 125:55-61.
doi: S1386-5056(18)31087-6 pmid: 30914181 |
[10] | Saria S, Rajani AK, Gould J, et al. Integration of early physiolo-gical responses predicts later illness severity in preterm infants[J]. Sci Transl Med, 2010, 2(48):48-65. |
[11] |
Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-Ⅲ, a freely accessible critical care database[J]. Sci Data, 2016, 3:160035.
doi: 10.1038/sdata.2016.35 |
[12] |
Agrawal S, Chen L, Tergas A I, et al. Characteristics associated with prolonged length of stay after hysterectomy for benign gynecologic conditions [J]. Am J Obstet Gynecol, 2018, 219(1): 89.e1-89.e15.
doi: 10.1016/j.ajog.2018.05.001 |
[13] |
Wolff J, Mccrone P, Patel A, et al. Predictors of length of stay in psychiatry: Analyses of electronic medical records[J]. BMC Psychiatry, 2015, 15:238.
doi: 10.1186/s12888-015-0623-6 pmid: 26446584 |
[14] |
Louw N, Steel SJ. Variable selection in kernel Fisher discriminant analysis by means of recursive feature elimination[J]. Comput Stat Data Anal, 2006, 51(3):2043-2055.
doi: 10.1016/j.csda.2005.12.018 |
[15] | Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers[C]// Proceedings of the fifth annual workshop on computational learning theory. New York: Association for Computing Machinery, 1992: 144-152. |
[16] |
Furey TS, Cristianini N, Duffy N, et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data[J]. Bioinformatics, 2000, 16(10):906-914.
pmid: 11120680 |
[17] | Breiman L, Friedman JH, Olshen RA, et al. Classification and regression trees[M]. Spain: Routledge, 2017. |
[18] |
Austin PC. A comparison of regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality[J]. Stat Med, 2007, 26(15):2937-2957.
pmid: 17186501 |
[19] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324 |
[20] |
Supatcha L, Chinae T, Chakarida N, et al. Heterogeneous ensemble approach with discriminative features and modified-SMOTE bagging for pre-miRNA classification[J]. Nucleic Acids Res, 2013, 41(1):e21.
doi: 10.1093/nar/gks878 |
[21] |
Wang SQ, Yang J, Chou KC. Using stacked generalization to predict membrane protein types based on pseudo-amino acid composition[J]. J Theor Biol, 2006, 242(4):941-946.
doi: 10.1016/j.jtbi.2006.05.006 |
[22] |
Touw WG, Bayjanov JR, Overmars L, et al. Data mining in the life sciences with random forest: A walk in the park or lost in the jungle?[J]. Brief Bioinformatics, 2013, 14(3):315-326.
doi: 10.1093/bib/bbs034 |
[23] |
Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models a framework for traditional and novel measures[J]. Epidemiology, 2010, 21(1):128-138.
doi: 10.1097/EDE.0b013e3181c30fb2 pmid: 20010215 |
[24] |
van Hoorde K, van Huffel S, Timmerman D, et al. A spline-based tool to assess and visualize the calibration of multiclass risk predictions[J]. J Biomed Inform, 2015, 54:283-293.
doi: 10.1016/j.jbi.2014.12.016 pmid: 25579635 |
[25] |
Peigne V, Somme D, Guerot E, et al. Treatment intensity, age and outcome in medical ICU patients: Results of a French admi-nistrative database[J]. Ann Intensive Care, 2016, 6(1):7.
doi: 10.1186/s13613-016-0107-y |
[26] |
Fallenius M, Skrifvars MB, Reinikainen M, et al. Common intensive care scoring systems do not outperform age and glasgow coma scale score in predicting mid-term mortality in patients with spontaneous intracerebral hemorrhage treated in the intensive care unit[J]. Scand J Trauma Resusc Emerg Med, 2017, 25(1):102.
doi: 10.1186/s13049-017-0448-z |
[27] |
Szalados JE. Long-term mortality and quality of life after prolonged mechanical ventilation. Age and functional status as determinants of intensive care unit outcome: Sound basis for health policy or tip of the outcomes iceberg[J]. Crit Care Med, 2004, 32(1):291-293.
pmid: 14707597 |
[28] |
Brandberg C, Blomqvist H, Jirwe M. What is the importance of age on treatment of the elderly in the intensive care unit?[J]. Acta Anaesthesiol Scand, 2013, 57(6):698-703.
doi: 10.1111/aas.12073 pmid: 23373851 |
[29] |
Diringer MN, Reaven NL, Funk SE, et al. Elevated body temperature independently contributes to increased length of stay in neurologic intensive care unit patients[J]. Crit Care Med, 2004, 32(7):1489-1495.
pmid: 15241093 |
[30] |
Yien HW, Hseu SS, Lee LC, et al. Spectral analysis of systemic arterial pressure and heart rate signals as a prognostic tool for the prediction of patient outcome in the intensive care unit[J]. Crit Care Med, 1997, 25(2):258-266.
pmid: 9034261 |
[31] |
Grander W, Mullauer K, Koller B, et al. Heart rate before ICU discharge: a simple and readily available predictor of short- and long-term mortality from critical illness[J]. Clin Res Cardiol, 2013, 102(8):599-606.
doi: 10.1007/s00392-013-0571-4 |
[32] |
Esteve F, Lopez-Delgado JC, Javierre C, et al. Evaluation of the PaO2/FiO2 ratio after cardiac surgery as a predictor of outcome during hospital stay[J]. BMC Anesthesiol, 2014, 14:83.
doi: 10.1186/1471-2253-14-83 |
[33] |
Hu BJ, Tao LL, Rosenthal VD, et al. Device-associated infection rates, device use, length of stay, and mortality in intensive care units of 4 Chinese hospitals: International Nosocomial Control Consortium findings[J]. Am J Infect Control, 2013, 41(4):301-306.
doi: 10.1016/j.ajic.2012.03.037 |
[34] | 徐文秀, 方理超, 刘励军. APACHE Ⅱ评分和 SAPSⅡ评分预测危重症患者病死率的应用价值分析[J]. 中国血液流变学杂志, 2010, (2):245-247. |
[35] | 汪洋, 陈上仲, 胡才宝, 等. 基于随机森林法的严重脓毒症/脓毒性休克预后评估模型对患者28 d死亡的预测价值[J]. 中华危重病急救医学, 2017, 29(12):1071-1076. |
[1] | LIN Yu,WU Jing-yi,LIN Ke,HU Yong-hua,KONG Gui-lan. Prediction of intensive care unit readmission for critically ill patients based on ensemble learning [J]. Journal of Peking University (Health Sciences), 2021, 53(3): 566-572. |
[2] | Xue-hua ZHU,Ming-yu YANG,Hai-zhui XIA,Wei HE,Zhi-ying ZHANG,Yu-qing LIU,Chun-lei XIAO,Lu-lin MA,Jian LU. Application of machine learning models in predicting early stone-free rate after flexible ureteroscopic lithotripsy for renal stones [J]. Journal of Peking University(Health Sciences), 2019, 51(4): 653-659. |
|