Journal of Peking University (Health Sciences) ›› 2022, Vol. 54 ›› Issue (5): 822-828. doi: 10.19723/j.issn.1671-167X.2022.05.007

Previous Articles     Next Articles

伟岗 方1,*(),新霞 田1,2,云涛 解3   

  • Received:2022-06-25 Online:2022-10-18 Published:2022-10-14
  • Contact: 伟岗 方 E-mail:wgfang@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(81872382);the National Natural Science Foundation of China(81672790);the National Natural Science Foundation of China(81171961)

RICH HTML

  

CLC Number: 

  • R34

"

"

基因名称 SNP位点 与乳腺癌易感性明显相关联的位点 参考文献
BRCA1 rs8176323, rs8176303, rs8176199, rs3737559, rs8067269, rs2070833 rs3737559(C>T)的TT/TC基因型携带者与CC基因型相比,发生乳腺癌风险增加35% [9]
AURKA rs6064391, rs911162, rs2298016, rs8117896, rs10485805, rs6024836, rs2273535, rs2064863 rs6024836(A>G)的GG基因型携带者与AG/AA基因型相比,发生乳腺癌的风险提高54%; rs2273535(T>A)的AA/TA基因型携带者与TT基因型相比,发生乳腺癌风险增加81% [9]
CENTROBIN rs4239115, rs4791987, rs11078719, rs11650083, rs4462665 rs11650083(A>C)的AC、CC基因型携带者与AA基因型相比,发生乳腺癌的风险分别降低19%、27%; CATCG [rs4239115 (C>T)+rs4791987(A>G)+rs11078719 (T>C)+rs11650083(A>C)+rs4462665(G>C)]单体型携带者与最常见单体型CATAG相比,发生乳腺癌的风险降低86% [10]
CDK1 rs2448343, rs3213048, rs3213067, rs1871446, rs10711, rs1060373 rs2448343(G>A)的AA/AG基因型携带者与GG基因型相比,发生乳腺癌风险降低19%; 对于体重指数 < 23 kg/m2的女性,rs2448343(G>A)的AA/AG基因型携带者与GG基因型相比,发生乳腺癌风险降低42%; rs1871446(C>T)的TT基因型携带者与CT/CC基因型相比,发生乳腺癌的风险降低64% [11]
TGFB1 rs1800469, rs2241716, rs4803455, rs747857, rs12983047, rs10417924, rs12981053 rs1800469(C>T)的TT/TC基因型携带者与CC基因型相比,发生乳腺癌风险降低24%; rs10417924(C>T)的TT/TC基因型携带者与CC基因型相比,发生乳腺癌的风险增加27% [12]
CDH1 rs7200690, rs12185157, rs7198799, rs17715799, rs10431923, rs7186053, rs6499199, rs4783689, rs13689 rs13689(T>C)的CC基因型携带者与CT/TT基因型相比,发生乳腺癌的风险提高89% [13]
PAI-1 rs2227631, rs6090, rs2227667, rs2227672, rs2227692, rs11178 rs2227672(G>T)的TT基因型携带者与GG/GT基因型相比,发生乳腺癌的风险提高1.52倍 [14]
NTN4 rs10859915, rs17356907, rs11836367, rs61938093, rs11836367(C>T)的CT/TT基因型携带者与CC基因型相比,发生乳腺癌风险降低27%; rs61938093(C>T)的CT/TT基因型携带者与CC基因型相比,发生乳腺癌风险降低23%;rs17356907(A>G)的AG/GG基因型携带者与AA基因型相比,发生乳腺癌风险降低22% [15]
1 Britt KL , Cuzick J , Phillips KA . Key steps for effective breast cancer prevention[J]. Nat Rev Cancer, 2020, 20 (8): 417- 436.
doi: 10.1038/s41568-020-0266-x
2 Fanfani V , Zatopkova M , Harris AL , et al. Dissecting the heritable risk of breast cancer: from statistical methods to susceptibility genes[J]. Semin Cancer Biol, 2021, 72, 175- 184.
doi: 10.1016/j.semcancer.2020.06.001
3 Lilyquist J , Ruddy KJ , Vachon CM , et al. Common genetic variation and breast cancer risk: past, present, and future[J]. Cancer Epidemiol Biomarkers Prev, 2018, 27 (4): 380- 394.
doi: 10.1158/1055-9965.EPI-17-1144
4 Marian AJ . Molecular genetic studies of complex phenotypes[J]. Transl Res, 2012, 159 (2): 64- 79.
doi: 10.1016/j.trsl.2011.08.001
5 Genomes-Project C , Abecasis GR , Auton A , et al. An integrated map of genetic variation from 1, 092 human genomes[J]. Nature, 2012, 491 (7422): 56- 65.
doi: 10.1038/nature11632
6 Gabriel SB , Schaffner SF , Nguyen H , et al. The structure of haplotype blocks in the human genome[J]. Science, 2002, 296 (5576): 2225- 2229.
doi: 10.1126/science.1069424
7 Daly MJ , Rioux JD , Schaffner SF , et al. High-resolution haplotype structure in the human genome[J]. Nat Genet, 2001, 29 (2): 229- 232.
doi: 10.1038/ng1001-229
8 Stadler ZK , Thom P , Robson ME , et al. Genome-wide association studies of cancer[J]. J Clin Oncol, 2010, 28 (27): 4255- 4267.
doi: 10.1200/JCO.2009.25.7816
9 Ruan Y , Song AP , Wang H , et al. Genetic polymorphisms in Aurora-A and BRCA1 are associated with breast cancer susceptibility in a Chinese Han population[J]. J Pathol, 2011, 225 (4): 535- 543.
doi: 10.1002/path.2902
10 Wang H , Xie YT , Han JY , et al. Genetic polymorphisms in centrobin and Nek2 are associated with breast cancer susceptibility in a Chinese Han population[J]. Breast Cancer Res Treat, 2012, 136 (1): 241- 251.
doi: 10.1007/s10549-012-2244-9
11 Han JY , Wang H , Xie YT , et al. An association study of germline polymorphisms in CCNE1 and CDK2 with breast cancer risk, tumor characteristics and survival in a Chinese Han population[J]. PLoS One, 2012, 7 (11): e49296.
doi: 10.1371/journal.pone.0049296
12 Zhou YT , Zheng LY , Wang YJ , et al. Effect of functional variant rs11466313 on breast cancer susceptibility and TGFB1 promoter activity[J]. Breast Cancer Res Treat, 2020, 184 (1): 237- 248.
doi: 10.1007/s10549-020-05841-w
13 Li Y , Chen YL , Xie YT , et al. Association study of germline variants in CCNB1 and CDK1 with breast cancer susceptibility, progression and survival among Chinese Han women[J]. PLoS One, 2013, 8 (12): e84489.
doi: 10.1371/journal.pone.0084489
14 陈奕霖, 贾玉棉, 解云涛, 等. PAI-1基因单核苷酸多态性与乳腺癌易感性及预后的关联分析[J]. 中华病理学杂志, 2016, 45 (8): 533- 539.
doi: 10.3760/cma.j.issn.0529-5807.2016.08.008
15 Yang H , Ting X , Geng YH , et al. A risk variant rs11836367 contributes to breast cancer onset and metastasis by attenuating Wnt signaling via regulating NTN4 expression[J]. Sci Advs, 2022, 8 (23): eabn3509.
doi: 10.1126/sciadv.abn3509
16 Baynes C , Healey CS , Pooley KA , et al. Common variants in the ATM, BRCA1, BRCA2, CHEK2 and TP53 cancer susceptibility genes are unlikely to increase breast cancer risk[J]. Breast Cancer Res, 2007, 9 (2): R27.
doi: 10.1186/bcr1669
17 Bonnen PE , Wang PJ , Kimmel M , et al. Haplotype and linkage disequilibrium architecture for human cancer-associated genes[J]. Genome Res, 2002, 12 (12): 1846- 1853.
doi: 10.1101/gr.483802
18 Naso FD , Boi D , Ascanelli C , et al. Nuclear localisation of Aurora-A: its regulation and significance for Aurora-A functions in cancer[J]. Oncogene, 2021, 40 (23): 3917- 3928.
doi: 10.1038/s41388-021-01766-w
19 Sun T , Miao X , Wang J , et al. Functional Phe31Ile polymorphism in Aurora A and risk of breast carcinoma[J]. Carcinogenesis, 2004, 25 (11): 2225- 2230.
doi: 10.1093/carcin/bgh244
20 Lo YL , Yu JC , Chen ST , et al. Breast cancer risk associated with genotypic polymorphism of the mitosis-regulating gene Aurora-A/STK15/BTAK[J]. Int J Cancer, 2005, 115 (2): 276- 283.
doi: 10.1002/ijc.20855
21 Zou C , Li J , Bai Y , et al. Centrobin: a novel daughter centriole-associated protein that is required for centriole duplication[J]. J Cell Biol, 2005, 171 (3): 437- 445.
doi: 10.1083/jcb.200506185
22 Olson JE , Wang X , Pankratz VS , et al. Centrosome-related genes, genetic variation, and risk of breast cancer[J]. Breast Cancer Res Treat, 2011, 125 (1): 221- 228.
doi: 10.1007/s10549-010-0950-8
23 Jeong Y , Lee J , Kim K , et al. Characterization of NIP2/centrobin, a novel substrate of Nek2, and its potential role in microtubule stabilization[J]. J Cell Sci, 2007, 120 (12): 2106- 2116.
doi: 10.1242/jcs.03458
24 Quan L , Gong Z , Yao S , et al. Cytokine and cytokine receptor genes of the adaptive immune response are differentially associated with breast cancer risk in American women of African and European ancestry[J]. Int J Cancer, 2014, 134 (6): 1408- 1421.
doi: 10.1002/ijc.28458
25 Cox DG , Penney K , Guo Q , et al. TGFB1 and TGFBR1 polymorphisms and breast cancer risk in the Nurses' Health Study[J]. BMC Cancer, 2007, 7, 175.
doi: 10.1186/1471-2407-7-175
26 Healy J , Dionne J , Bélanger H , et al. Functional impact of sequence variation in the promoter region of TGFB1[J]. Int J Cancer, 2009, 125 (6): 1483- 1489.
doi: 10.1002/ijc.24526
27 Michailidou K , Hall P , Gonzalez-Neira A , et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk[J]. Nat Genet, 2013, 45 (4): 353- 361.
doi: 10.1038/ng.2563
28 Maurano MT , Humbert R , Rynes E , et al. Systematic localization of common disease-associated variation in regulatory DNA[J]. Science, 2012, 337 (6099): 1190- 1195.
doi: 10.1126/science.1222794
29 Milne RL , Kuchenbaecker KB , Michailidou K , et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer[J]. Nat Genet, 2017, 49 (12): 1767- 1778.
doi: 10.1038/ng.3785
30 Zheng W , Zhang B , Cai Q , et al. Common genetic determinants of breast-cancer risk in East Asian women: a collaborative study of 23 637 breast cancer cases and 25 579 controls[J]. Hum Mol Genet, 2013, 22 (12): 2539- 2550.
doi: 10.1093/hmg/ddt089
31 Ferreira MA , Gamazon ER , Al-Ejeh F , et al. Genome-wide association and transcriptome studies identify target genes and risk loci for breast can-cer[J]. Nat Commun, 2019, 10 (1): 1741.
doi: 10.1038/s41467-018-08053-5
32 Rivandi M , Martens JWM , Hollestelle A . Elucidating the underlying functional mechanisms of breast cancer susceptibility through post-gwas analyses[J]. Front Genet, 2018, 9, 1- 18.
doi: 10.3389/fgene.2018.00001
33 Ghoussaini M , Edwards SL , Michailidou K , et al. Evidence that breast cancer risk at the 2q35 locus is mediated through igfbp5 regulation[J]. Nat Commun, 2014, 5, 4999.
doi: 10.1038/ncomms5999
34 Quigley DA , Fiorito E , Nord S , et al. The 5p12 breast cancer susceptibility locus affects mrps30 expression in estrogen-receptor positive tumors[J]. Mol Oncol, 2014, 8 (2): 273- 284.
doi: 10.1016/j.molonc.2013.11.008
35 Lawrenson K , Kar S , Mccue K , et al. Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus[J]. Nat Commun, 2016, 7, 12675.
doi: 10.1038/ncomms12675
36 Wen W , Shu XO , Guo X , et al. Prediction of breast cancer risk based on common genetic variants in women of east Asian ancestry[J]. Breast Cancer Res, 2016, 18 (1): 1- 8.
doi: 10.1186/s13058-015-0660-6
37 Mavaddat N , Michailidou K , Dennis J , et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes[J]. Am J Hum Genet, 2019, 104 (1): 21- 34.
doi: 10.1016/j.ajhg.2018.11.002
38 Diet GS , Macinnis RJ , Bickerstaffe A , et al. Breast cancer risk prediction using clinical models and 77 independent risk-associated snps for women aged under 50 years: Australian breast cancer family registry[J]. Cancer Epidemiol Biomarkers Prev, 2016, 25 (2): 359- 365.
doi: 10.1158/1055-9965.EPI-15-0838
[1] Zhi-wei LIU,Peng LIU,Fan-xing MENG,Tian-shui LI,Ying WANG,Jia-qi GAO,Zuo-yi ZHOU,Cong WANG,Bin ZHAO. Regulative effects of endogenous sulfur dioxide on oxidant stress in myocardium of rat with sepsis [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 582-586.
[2] Chao HAN,Zhu-xing ZHOU,You-rong CHEN,Zi-hui DONG,Jia-kuo YU. Biological characteristics of sheep peripheral blood mesenchymal stem cell [J]. Journal of Peking University (Health Sciences), 2022, 54(6): 1151-1157.
[3] Jing ZHANG,Jia-gui SONG,Zhen-bin WANG,Yu-qing GONG,Tian-zhuo WANG,Jin-yu ZHOU,Jun ZHAN,Hong-quan ZHANG. Kindlin-2 regulates endometrium development via mTOR and Hippo signaling pathways in mice [J]. Journal of Peking University (Health Sciences), 2022, 54(5): 846-852.
[4] Tian-yu CAI,Zhen-peng ZHU,Chun-ru XU,Xing JI,Tong-de LV,Zhen-ke GUO,Jian LIN. Expression and significance of fibroblast growth factor receptor 2 in clear cell renal cell carcinoma [J]. Journal of Peking University (Health Sciences), 2022, 54(4): 628-635.
[5] SHUAI Ting,LIU Juan,GUO Yan-yan,JIN Chan-yuan. Knockdown of long non-coding RNA MIR4697 host gene inhibits adipogenic differentiation in bone marrow mesenchymal stem cells [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 320-326.
[6] TIAN Ai-ju, LI Zi-jian. 14-3-3/HIP-55 complex increases the stability of HIP-55 [J]. Journal of Peking University(Health Sciences), 2015, 47(6): 893-897.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!