Journal of Peking University (Health Sciences) ›› 2024, Vol. 56 ›› Issue (3): 471-478. doi: 10.19723/j.issn.1671-167X.2024.03.014

Previous Articles     Next Articles

Influence of telemedicine on the operation of public hospitals in China

Kexin RAN,Yuhan LI,Wen FENG*()   

  1. Department of Health Policy and Management, Peking University School of Public Health, Beijing 100191, China
  • Received:2024-02-18 Online:2024-06-18 Published:2024-06-12
  • Contact: Wen FENG E-mail:fengwenmail@sina.com

RICH HTML

  

Abstract:

Objective: Telemedicine, as an information-based tool, is widely recognized as an effective solution for compensating for the imbalanced allocation of medical resources in China. This study specifi-cally aimed to analyze the impact of telemedicine functions on the operational efficiency of public hospitals, with a particular focus on their heterogeneous effects on hospitals of different levels. Methods: A cross-sectional research design was used based on the 2022 Health Informatization Statistical Survey data, and 8 944 public hospitals were used as research objects to analyze the impact of telemedicine on hospital revenues and business capacity. Multivariate linear model, propensity score matching (PSM), and grouped regression methods were employed to evaluate the impact of telemedicine on hospital revenues, number of consultations, and the number of discharges. Results: The descriptive results showed that telemedicine was available in 35.51% of public hospitals. The analysis also demonstrated that various factors, such as hospital level, academic category, area of the hospital, administrational level and number of beds all had a significant influence on the operation of the hospital. Moreover, the regression results showed that opening telemedicine could increase hospital revenues by 0.140 (P < 0.01), hospital consultations by 0.136 (P < 0.01), and the number of discharges by 0.316 (P < 0.01). After correcting for endogeneity using the propensity score matching, the results showed that the effect of opening telemedicine on hospital revenues, consultations, and the number of discharges was 0.191 (P < 0.01), 0.216 (P < 0.01), and 0.353 (P < 0.01), respectively. Further heterogeneity analysis was conducted to explore the differential effects of telemedicine on hospitals of different levels. Grouped regression showed that telemedicine had a positive impact on the income of secondary hospitals, with a coefficient of 0.088 (P < 0.05), and it had a more significant positive impact on hospital consultations in secondary hospitals, with a coefficient of 0.127 (P < 0.01). An even greater impact on the number of discharges in primary hospitals, with a coefficient of 1.203 (P < 0.01). Telemedicine, on the other hand, did not have a significant positive impact on the overall revenue and operational capacity of tertiary hospitals. Conclusion: Telemedicine had a significant promoting effect on hospital revenues, hospital consultations and the number of discharges, and this effect was differentiated between hospitals of different levels. Through the construction of telemedicine, primary hospitals were able to significantly improve their business capacity and revenue, which played a positive role in improving the operation of primary public hospitals.

Key words: Telemedicine, Public hospitals, Hospital revenue, Consultation

CLC Number: 

  • R197

Table 1

Descriptive statistics of major variables (n=8 944)"

Variables n (%) or $\bar x \pm s$Dependent variable
Hospital revenue (F/t/β) Hospital consultations (F/t/β) Number of discharges (F/t/β)
Telemedicine
  Yes 3 176 (35.51) 19.048*** 17.542*** 20.430***
  No 5 768 (64.49)
Hospital level 2 643.946*** 1 663.037*** 1 300.762***
  Primary hospitals 1 576 (17.62)
  Secondary hospitals 4 825 (53.95)
  Other tertiary hospitals 1 028 (11.49)
  Tertiary first-class hospital 1 515 (16.94)
Academic category 27.140*** 172.278*** 103.792***
  Traditional Chinese medicine hospital 2 272 (25.40)
  Specialized hospitals 1 389 (15.53)
  General hospital 5 283 (59.07)
Area 29.750*** 36.153*** 14.700***
  Western regions 2 858 (31.95)
  Central regions 2 616 (29.25)
  Eastern regions 3 470 (38.80)
Administrational level 486.539*** 274.839*** 206.224***
  Other hospitals 1 446 (16.17)
  County hospitals 2 729 (30.51)
  County-level city hospitals 2 231 (24.94)
  Prefecture-level city hospitals 1 939 (21.68)
  Provincial hospitals 555 (6.21)
  National hospitals 44 (0.49)
Beds 526.275±602.097 0.002*** 0.002*** 0.003***
Provinces 8 944 (100.00) 24.167*** 27.619*** 11.654***

Table 2

Multiple linear regression model of the effect of opening telemedicine on hospital revenue and operational capacity"

VariableDependent variable
ln (hospital revenue) ln (hospital consultations) ln (number of discharges)
Telemedicine (Ref: no)
  Yes 0.140***(5.406) 0.136***(4.828) 0.316*** (7.134)
Hospital level (Ref: primary hospitals)
  Secondary hospitals 1.968*** (33.289) 1.628*** (25.176) 3.544*** (28.681)
  Other tertiary hospitals 2.686*** (36.447) 2.339*** (30.361) 4.349*** (32.468)
  Tertiary first-class hospital 2.983*** (35.345) 2.695*** (31.376) 4.447*** (29.185)
Academic category (Ref: traditional Chinese medicine hospital)
  Specialized hospitals -0.016 (-0.359) -0.654*** (-12.043) -0.613*** (-6.274)
  General hospital 0.343*** (11.388) 0.369*** (11.293) 0.308*** (5.826)
Area (Ref: Western region)
  Central regions 0.765*** (5.488) 1.079*** (9.455) 1.106*** (3.531)
  Eastern regions 2.007*** (13.899) 2.039*** (13.584) 1.332*** (4.093)
Administrational level (Ref: other hospitals)
  County hospitals 0.995*** (18.242) 0.851*** (14.256) 1.722*** (15.181)
  County-level city hospitals 0.918*** (14.641) 0.777*** (11.309) 1.282*** (10.681)
  Prefecture-level city hospitals 0.795*** (12.911) 0.510*** (7.339) 0.902*** (7.410)
  Provincial hospitals 0.755*** (7.495) 0.339*** (3.466) 0.601*** (3.863)
  National hospitals 0.955*** (4.803) 0.668*** (3.280) 0.662* (1.949)
Beds 0.001*** (24.641) 0.001*** (20.910) 0.002*** (20.338)
Constant 7.146*** (49.985) 7.816*** (64.493) 1.774*** (5.734)
Provinces fixed effect Yes Yes Yes
n 8 941 8 943 8 917
R2 0.662 0.546 0.514

Table 3

Balance test for matching related variables"

Variable MatchingMeanBias/% Reduct bias/%t test
Treated Controlt P>|t|
Hospital level Unmatched 2.482 2.165 34.0 99.7 15.36 < 0.001
Matched 2.482 2.483 -0.1 -0.04 0.968
Academic category Unmatched 2.340 2.335 0.5 -164.7 0.23 0.816
Matched 2.340 2.328 1.4 0.54 0.590
Area Unmatched 2.012 2.099 -10.3 89.8 -4.70 < 0.001
Matched 2.012 2.004 1.0 0.41 0.679
Affiliation Unmatched 2.855 2.657 16.9 87.4 7.62 < 0.001
Matched 2.855 2.830 2.1 0.85 0.395
Beds Unmatched 636.410 465.740 28.1 83.1 12.95 < 0.001
Matched 636.410 607.610 4.7 1.76 0.078
Province Unmatched 38.946 36.788 14.4 78.7 6.51 < 0.001
Matched 38.946 39.406 -3.1 -1.24 0.214

Figure 1

Kernel density function plots before (left) and after (right) propensity score matching"

Table 4

Results of the average treatment effect on the treated of telemedicine on hospital operations"

MethodDependent variable
ln (hospital revenue) ln (hospital consultations) ln (number of discharges)
ATT t ATT t ATT t
Nearest neighbor matching 1 ∶1 0.168*** 2.91 0.194*** 3.56 0.388*** 4.51
Nearest neighbor matching 1 ∶3 0.154*** 3.32 0.208*** 4.33 0.285*** 4.06
Radius matching 0.271*** 6.27 0.271*** 6.52 0.463*** 6.98
Kernel matching 0.169*** 2.83 0.191*** 3.17 0.274*** 3.16
Mean 0.191 0.216 0.353

Table 5

Grouped regression of the impact of telemedicine on the hospital revenue in different levels of hospitals"

Itemsln (hospital revenue)
Primary hospitals Secondary hospitals Other tertiary hospitals Tertiary first-class hospital
Telemedicine (Ref: no)
  Yes 0.258* (1.834) 0.088*** (3.503) -0.003 (-0.046) 0.028 (0.752)
Control variable Yes Yes Yes Yes
n 1 575 4 825 1 027 1 514
R2 0.244 0.517 0.381 0.657

Table 6

Grouped regression of the impact of telemedicine on the hospital consultations in different levels of hospitals"

Itemsln (hospital consultations)
Primary hospitals Secondary hospitals Other tertiary hospitals Tertiary first-class hospital
Telemedicine (Ref: no)
  Yes 0.149 (0.966) 0.127*** (4.259) -0.006 (-0.093) 0.023 (0.548)
Control variable Yes Yes Yes Yes
n 1 576 4 824 1 028 1 515
R2 0.117 0.451 0.441 0.546

Table 7

Grouped regression of the impact of telemedicine on the number of discharges in different levels of hospitals"

Itemsln (number of discharges)
Primary hospitals Secondary hospitals Other tertiary hospitals Tertiary first-class hospital
Telemedicine (Ref: no)
  Yes 1.203*** (4.564) 0.126*** (2.912) -0.035 (-0.533) 0.066 (1.430)
Control variable Yes Yes Yes Yes
n 1 556 4 819 1 028 1 514
R2 0.245 0.458 0.496 0.515
1 国家卫生部与国家人口计划生育委员会. 卫生计生委关于推进医疗机构远程医疗服务的意见[EB/OL]. [2014-08-21]. https://www.gov.cn/gongbao/content/2014/content_2792664.htm.
2 国家卫生计生委办公厅. 国家卫生计生委办公厅关于印发远程医疗信息系统建设技术指南的通知[EB/OL]. [2014-12-10]. http://www.nhc.gov.cn/mohwsbwstjxxzx/s8555/201501/120c912de1c4474c95b345d001271368.shtml.
3 Huang EY , Knight S , Guetter CR , et al.Telemedicine and telementoring in the surgical specialties: A narrative review[J].Am J Surg,2019,218(4):760-766.
doi: 10.1016/j.amjsurg.2019.07.018
4 Nesemann JM , Munoz M , Talero SL , et al.Telemedicine for screening eye disease in the remote Peruvian Amazon: Proof-of-concept[J].Trans R Soc Trop Med Hyg,2022,116(6):589-591.
doi: 10.1093/trstmh/trab175
5 占玉芬, 陈文军, 李艳.我院跨国式远程医疗的实践与探索[J].中华医院管理杂志,2019,35(3):213-215.
doi: 10.3760/cma.j.issn.1000-6672.2019.03.010
6 Lu W , Hou H , Ma R , et al.Influencing factors of patient satisfaction in teleconsultation: A cross-sectional study[J].Technol Forecast Soc,2021,168,120775.
doi: 10.1016/j.techfore.2021.120775
7 Yanicelli LM , Vegetti M , Goy CB , et al.SiTe iC: A telemoni-toring system for heart failure patients[J].Int J Med Inform,2020,141,104204.
doi: 10.1016/j.ijmedinf.2020.104204
8 汪晓珊. 喀什地区远程医疗的社会经济效益分析研究[D]. 新疆: 石河子大学, 2014.
9 Chauhan A , Jakhar SK , Jabbour CJC .Implications for sustainable healthcare operations in embracing telemedicine services during a pandemic[J].Technol Forecast Soc,2022,176,121462.
doi: 10.1016/j.techfore.2021.121462
10 Kim DS , Chu H , Min BK , et al.Telemedicine center of Korean Medicine for treating patients with COVID-19: A retrospective analysis[J].Integr Med Res,2020,9(3):100492.
doi: 10.1016/j.imr.2020.100492
11 Gudi N , Konapur R , John O , et al.Telemedicine supported strengthening of primary care in WHO South East Asia region: Lessons from the COVID-19 pandemic experiences[J].BMJ Innovations,2021,7(3):580-585.
doi: 10.1136/bmjinnov-2021-000699
12 Lilly CM , Motzkus C , Rincon T , et al.ICU telemedicine program financial outcomes[J].Chest,2017,151(2):286-297.
doi: 10.1016/j.chest.2016.11.029
13 路阳, 汪晓珊, 邹小广, 等.新疆地区远程会诊系统应用的经济效益案例分析[J].中国卫生经济,2015,34(4):71-73.
14 国家卫生计生委办公厅. 国家卫生计生委办公厅关于印发医院信息化建设应用技术指引(2017年版)的通知[EB/OL]. [2017-12-13]. http://www.nhc.gov.cn/cms-search/xxgk/getManuscriptXxgk.htm?id=aed4d45c 8f75467fb208b4707cceb0ad.
15 Kim SA , Park WS , Chun TJ , et al.Association of the implementation of PACS with hospital revenue[J].J Digit Imaging,2002,15(4):247-253.
doi: 10.1007/s10278-002-0025-4
16 Lee J , Choi JY .Texas hospitals with higher health information technology expenditures have higher revenue: A longitudinal data analysis using a generalized estimating equation model[J].BMC Health Serv Res,2016,16,117.
doi: 10.1186/s12913-016-1367-9
17 Rosenbaum PR , Rubin DB .The central role of the propensity score in observational studies for causal effects[J].Biometrika,1983,70(1):41-55.
doi: 10.1093/biomet/70.1.41
18 管德坤, 孙自学.新时期我国远程医疗发展驱动、阻碍因素及建设重点分析[J].中国医院,2020,24(4):56-58.
doi: 10.3969/j.issn.1671-9174.2020.04.005
19 陈强.高级计量经济学及Stata应用[M].北京: 高等教育出版社,2014.
20 Zhao M , Hamadi H , Rob HD , et al.The relationship between health information technology laboratory tracking systems and hospital financial performance and quality[J].Hosp Top,2019,97(3):99-106.
doi: 10.1080/00185868.2019.1623735
21 Zhao M , Hamadi H , Xu J , et al.Telehealth and hospital perfor-mance: Does it matter?[J].J Telemed Telecare,2022,28(5):360-370.
doi: 10.1177/1357633X20932440
22 罗益佳, 周典, 徐慧, 等.基于史密斯模型的远程医疗政策执行分析[J].南京医科大学学报(社会科学版),2020,20(3):210-214.
23 胡文秀.远程医疗对提升卫生服务水平的促进作用及对策建议[J].学习与实践,2018,(1):80-84.
24 焦建鹏, 徐静, 王炳坤, 等.医联体远程医疗协作网建设与思考——以河南省人民医院为例[J].中国农村卫生事业管理,2022,42(7):511-514.
25 孙倩倩, 周守君.我国远程医疗的现状、问题及发展对策[J].南京医科大学学报(社会科学版),2022,22(1):25-30.
26 陈凤, 吴杨.远程医疗服务模式下提升医联体内基层卫生服务能力的实践[J].重庆医学,2020,49(10):1706-1708.
doi: 10.3969/j.issn.1671-8348.2020.10.036
27 李艳, 邹卿云, 尹传东, 等.农村边远地区远程医疗的社会效益和经济效益分析[J].中国卫生经济,2009,28(12):53-54.
28 王淼, 晏雪鸣, 徐剑云, 等.跨区域专科远程医疗协同体系的建立与探索[J].现代医院,2022,22(6):915-918.
29 Omboni S .Telemedicine during the COVID-19 in Italy: A missed opportunity?[J].Telemed J E Health,2020,26(8):973-975.
30 Khodadad-Saryazdi A .Exploring the telemedicine implementation challenges through the process innovation approach: A case study research in the French healthcare sector[J].Technovation,2021,107,102273.
[1] JING Ri-ze, ZHANG Hu-yang, XU Ting-ting, ZHANG Lu-yu, FANG Hai. Study on the efficiency of tertiary public hospitals and its influencing factors in Beijing [J]. Journal of Peking University(Health Sciences), 2018, 50(3): 408-415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!