Journal of Peking University (Health Sciences) ›› 2025, Vol. 57 ›› Issue (1): 192-201. doi: 10.19723/j.issn.1671-167X.2025.01.029
Previous Articles Next Articles
Yuanyuan FANG1, Fan XU2, Jie LEI1, Hao ZHANG2, Wenyu ZHANG2, Yu SUN2, Hongxin WU2, Kaiyuan FU1,*(
), Weiyu MAO1,*(
)
CLC Number:
| 1 |
Iturriaga V , Bornhardt T , Velasquez N . Temporomandibular joint: Review of anatomy and clinical implications[J]. Dent Clin North Am, 2023, 67 (2): 199- 209.
doi: 10.1016/j.cden.2022.11.003 |
| 2 |
Valesan LF , Da-Cas CD , Réus JC , et al. Prevalence of temporomandibular joint disorders: A systematic review and meta-analysis[J]. Clin Oral Investig, 2021, 25 (2): 441- 453.
doi: 10.1007/s00784-020-03710-w |
| 3 |
Cao Y , Yap AU , Lei J , et al. Oral health-related quality of life of patients with acute and chronic temporomandibular disorder diagnostic subtypes[J]. J Am Dent Assoc, 2022, 153 (1): 50- 58.
doi: 10.1016/j.adaj.2021.07.011 |
| 4 |
Jung HD , Kim SY , Park HS , et al. Orthognathic surgery and temporomandibular joint symptoms[J]. Maxillofac Plast Reconstr Surg, 2015, 37 (1): 14.
doi: 10.1186/s40902-015-0014-4 |
| 5 | Michelotti A , Rongo R , D'antò V , et al. Occlusion, orthodontics, and temporomandibular disorders: Cutting edge of the current evidence[J]. J World Fed Orthod, 2020, 9 (Suppl 3): S15- S18. |
| 6 |
Din NMU , Dar RA , Rasool M , et al. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead[J]. Comput Biol Med, 2022, 149, 106073.
doi: 10.1016/j.compbiomed.2022.106073 |
| 7 | Chan HP , Hadjiiski LM , Samala RK . Computer-aided diagnosis in the era of deep learning[J]. Med Phys, 2020, 47 (5): e218- e227. |
| 8 |
Wu S , Roberts K , Datta S , et al. Deep learning in clinical natural language processing: A methodical review[J]. J Am Med Inform Assoc, 2020, 27 (3): 457- 470.
doi: 10.1093/jamia/ocz200 |
| 9 | 邵毅, 张铭志, 许言午, 等. 人工智能在视网膜图像自动分割和疾病诊断中的应用指南(2024)[J]. 眼科新进展, 2024, 44 (8): 592- 601. |
| 10 | 魏世成, 王翰章. 颞颌关节紊乱综合征专家系统的设计与实现[J]. 华西口腔医学杂志, 1990, (3): 216- 220. |
| 11 |
Schiffman E , Ohrbach R , Truelove E , et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group†[J]. J Oral Facial Pain Headache, 2014, 28 (1): 6- 27.
doi: 10.11607/jop.1151 |
| 12 |
傅开元. 2014年新版国际颞下颌关节紊乱病分类及诊断标准解读[J]. 中华口腔医学杂志, 2017, 52 (6): 374- 376.
doi: 10.3760/cma.j.issn.1002-0098.2017.06.010 |
| 13 |
Minervini G , Marrapodi MM , Siurkel Y , et al. Accuracy of temporomandibular disorders diagnosis evaluated through the diagnostic criteria for temporomandibular disorder (DC/TDM) axis Ⅱ compared to the axis Ⅰ evaluations: A systematic review and meta-analysis[J]. BMC Oral Health, 2024, 24 (1): 299.
doi: 10.1186/s12903-024-03983-7 |
| 14 | 傅开元, 雷杰. 颞下颌关节紊乱病的分类、诊断及治疗进展[J]. 口腔医学, 2024, 44 (1): 6- 10. |
| 15 |
Zhang XL , Sun JL , He DM . Review of the studies on the relationship and treatment of anterior disk displacement and dentofacial deformity in adolescents[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2023, 135 (4): 470- 474.
doi: 10.1016/j.oooo.2022.07.018 |
| 16 |
Bas B , Ozgonenel O , Ozden B , et al. Use of artificial neural network in differentiation of subgroups of temporomandibular internal derangements: A preliminary study[J]. J Oral Maxillofac Surg, 2012, 70 (1): 51- 59.
doi: 10.1016/j.joms.2011.03.069 |
| 17 |
Tașkıran U , Çunkaș M . A deep learning based decision support system for diagnosis of temporomandibular joint disorder[J]. Applied Acoustics, 2021, 182, 108292.
doi: 10.1016/j.apacoust.2021.108292 |
| 18 | Sharma N, Dar IG, Kumar J, et al. Temporomandibular joint syndrome prediction using neural network[C]/ /Ray K, Sharan SN, Rawat S, et al. Proceedings of the Engineering Vibration, Communication and Information Processing: ICoEVCI 2018, India. Singapore: Springer, 2019: 1-8. |
| 19 |
Yap AU , Lei J , Zhang XH , et al. TMJ degenerative joint disease: Relationships between CBCT findings, clinical symptoms, and signs[J]. Acta Odontol Scand, 2023, 81 (7): 562- 568.
doi: 10.1080/00016357.2023.2215317 |
| 20 |
Patel A , Tee BC , Fields H , et al. Evaluation of cone-beam computed tomography in the diagnosis of simulated small osseous defects in the mandibular condyle[J]. Am J Orthod Dentofacial Orthop, 2014, 145 (2): 143- 156.
doi: 10.1016/j.ajodo.2013.10.014 |
| 21 |
Yadav S , Palo L , Mahdian M , et al. Diagnostic accuracy of 2 cone-beam computed tomography protocols for detecting arthritic changes in temporomandibular joints[J]. Am J Orthod Dentofacial Orthop, 2015, 147 (3): 339- 344.
doi: 10.1016/j.ajodo.2014.11.017 |
| 22 |
Lee KS , Kwak HJ , Oh JM , et al. Automated detection of TMJ osteoarthritis based on artificial intelligence[J]. J Dent Res, 2020, 99 (12): 1363- 1367.
doi: 10.1177/0022034520936950 |
| 23 | Choi E , Kim D , Lee JY , et al. Artificial intelligence in detecting temporomandibular joint osteoarthritis on orthopantomogram[J]. Sci Rep, 2021, 11 (1): 10246. |
| [1] | Rui-jie CAO,Zhong-qiang YAO,Peng-qing JIAO,Li-gang CUI. Comparison of diagnostic efficacy of different classification criteria for Takayasu arteritis in Chinese patients [J]. Journal of Peking University (Health Sciences), 2022, 54(6): 1128-1133. |
| [2] | Peng WANG,Hua WU,Ying CHE,Dong-wei FAN,Jue LIU,Li-yuan TAO. Evaluation of screening accuracy on osteoporosis self-assessment tool for Asians and its cut-off value in healthy physical examination population [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1085-1090. |
| [3] | XU Xiao, XU Li, JIANG Jiu-hui, WU Jia-qi, LI Xiao-tong, JING Wu-di. Accuracy analysis of alveolar dehiscence and fenestration of maxillary anterior teeth of Angle class Ⅲ by cone-beam CT [J]. Journal of Peking University(Health Sciences), 2018, 50(1): 104-109. |
| [4] | LEI Jie,LIU Mu-qing,FU Kai-yuan. Disturbedsleep, anxiety and stress are possible risk indicators for temporomandibular disorders with myofascialpain [J]. Journal of Peking University(Health Sciences), 2016, 48(4): 692-696. |
| [5] | WEI Pan, LU Song-He, FU Jing-Ya, YAN Zhi-Min, HUA Hong. Validation of the American College of Rheumatology Classification Criteria for primary Sjögren’s syndrome in Chinese patients [J]. Journal of Peking University(Health Sciences), 2014, 46(2): 306-310. |
| [6] | YU Yang, SHENG Qin-Hui, ZHANG Bao-Wei, DING Wen-Hui. Left atrial size predicts adverse cardiac events in patients with non-obstruction hypertrophic cardiomyopathy [J]. Journal of Peking University(Health Sciences), 2014, 46(2): 207-210. |
|
||