Journal of Peking University(Health Sciences) ›› 2019, Vol. 51 ›› Issue (2): 307-314. doi: 10.19723/j.issn.1671-167X.2019.02.021

Previous Articles     Next Articles

Early effects of low-level long-term occupational chromate exposure on workers’ health

Jia-xing LIU1,Gui-ping HU1,Lin ZHAO1,Yong-ming ZHANG1,Li WANG2,Guang JIA1,(),Rui-xiang LIU3,Hui-min FENG1,Hua-dong XU1   

  1. 1. Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
    2. Department of Occupational and Environmental Health, School of Public Health, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
    3. Inner Mongolia North Heavy Industry Group Co., Ltd. Hospital, Baotou 014010, Inner Mongolia, China
  • Received:2017-03-22 Online:2019-04-18 Published:2019-04-26
  • Contact: Guang JIA E-mail:jiaguangjia@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(81573118);the National Natural Science Foundation of China(81273043)

RICH HTML

  

Abstract:

Objective: To explore the effects of low-level long-term occupational exposure to chromate on the health of workers, and the potential biomarkers of early health effects in terms of lung function, immune toxicity and genetic damage.Methods: A total of 22 chromate contact workers and 44 non-chromate contact workers from an electroplating enterprise with long-term occupational environment monitoring in line with the national standards in Inner Mongolia were investigated. The questionnaire survey was conducted to collect the basic situation, the history of smoking, drinking, diseases and so on. The portable lung function instrument, inductively coupled plasma mass spectrometry and cytokinesis-blocked micronucleus test were performed to measure the chromate contact workers’ lung function, whole blood Cr (WB-Cr) and micronuclei frequency (MNF) of peripheral blood lymphocytes respectively. The cytometric bead array was used to detect the levels of IL-1β, IL-6, IL-8, IL-10, IL-12P70 and TNFα in the serum among the two groups. The effects of chromate exposure on the above-mentioned indexes involved biological exposure, lung function, immune response and genetic damage, and their correlation were analyzed with different statistical methods.Results: (1) the average length of service for chromate contact workers was 31 years, and their concentration of WB-Cr was 1.11-4.19 μg/L. They were divided into high and low exposure groups according to the median of 1.72 μg/L. The WB-Cr in the high exposure group (2.17 μg/L) was higher than that in the low exposure group (1.58 μg/L) as well as the reference value of the healthy population (1.74 μg/L, P<0.05); (2) the lung function test showed 10 (45.45%) chromate exposure workers had single or multiple abnormal lung function indexes, among which large airway injury index PEF, and small airway injury indexes MVV and FEF25%-75% were all negatively correlated with WB-Cr (r=-0.53, P<0.05; r=-0.52, P<0.05; r=-0.44, P<0.05); (3) IL-1β, IL-6, IL-8 and TNFα in the serum of chromate contact workers were higher than those in the control group (P<0.05), and there was a positive correlation between TNFα and WB-Cr, and among these cytokines (P<0.05); (4) the average lymphocyte MNF in chromate contact workers was 1.341%, higher than the reference value of the general population (0.436%, P<0.01). Poisson regression analysis showed MNF in thehigh exposure group was higher than that in the low exposure group, OR (95%CI) =1.323 (1.049, 1.669); (5) multiple linear regression analysis showed that the lung function index FEF25%-75% decreased with the increase of TNFα (P<0.05), no significant correlation was found between other cytokines, MNF and lung function indexes.Conclusion: Long-term low-level occupational exposure to chromate can cause the decline of lung function, immune inflammatory reaction and genetic damage in workers, in which local or systemic inflammatory response is associated with decreased lung function. Lung function indexes PEF, FEF25%-75% and MVV, serum cytokines IL-1β, IL-6, IL-8, and TNFα, and peripheral blood lymphocyte MNF may be used as early health effects biomarkers of chromate exposure.

Key words: Chromate, Lung function, Cytokines, Micronuclei frequency, Inflammatory response, Genetic damage

CLC Number: 

  • R135

Table 1

Comparison of basic information between chromate exposure group and control group"

Characteristics Exposure (n=22) Control (n=44) Statistics value P
Age/yearsa 42.32±9.71 41.57±9.10 -0.103b 0.918
Gender, n(%) <0.001c 1.000
Male 21 (95.50%) 42 (95.50%)
Female 1 (4.50%) 2 (4.50%)
BMI/(kg/m2)a 26.24±3.19 25.13±2.89 1.428b 0.158
Duration of exposure/yearsd 31 (10-31) -
Smoking, n(%) 0.122c 0.797
Yes 11 (50.00%) 20 (45.50%)
No 11 (50.00%) 24 (54.50%)
Drinking, n(%) 5.126c 0.036
Yes 7 (31.80%) 27 (61.40%)
No 15 (68.2%) 17 (38.60%)

Table 2

Whole blood Cr distribution in chromate exposure workers"

Items Low exposure group, n=11 High exposure group, n=11 Total, n=22 Za Pb
WB-Cr/(μg/L)
P50(P25-P75)
1.58
1.15-1.67
2.17
1.87-3.42
1.72
1.57-2.26
-3.973 <0.001
Pb 0.003 0.004 0.445

Table 3

Lung function and correlation with whole blood Cr among chromate exposure workers"

Indexes Test value/% Abnormal numbers (proportion) Reference rage/% r
FVC pred 95.33±14.84 1 (4.55%) ≥80 -0.06
FEV1 pred 99.86±11.42 1 (4.55%) ≥80 -0.35
FEV1/FVC 87.34±7.28 0 (0%) ≥70 -0.32
PEF pred 74.71±18.02 9 (40.91%) ≥80 -0.53*
MVV pred 101.90±14.52 1 (4.55%) ≥80 -0.52*
FEF25%-75%pred 98.52±21.94 2 (9.09%) ≥80 -0.44*

Table 4

Comparison of serum cytokines between chromate exposure group and control group"

Cytokines Exposure (n=22) Control (n=44) Zb P
IL-1β/(ng/L)a 0.61
(0.00-3.48)
0.00
(0.00-0.00)
-3.670 <0.001#
IL-6/(ng/L)a 11.20
(6.52-23.97)
7.26
(3.79-15.10)
-2.068 0.039*
IL-8/(ng/L)a 501.26
(351.09-797.77)
138.38
(81.02-276.81)
-4.911 <0.001#
TNFα/(ng/L)a 5.17
(2.29-10.99)
1.84
(0.90-4.68)
-2.802 0.005#

Table 5

Correlation analysis among WB-Cr, IL-1β, IL-6, IL-8 and TNFα in exposure group"

r WB-Cr IL-1β IL-6 IL-8 TNFα
WB-Cr 1.00 0.07 0.03 0.11 0.44*
IL-1β - 1.00 0.78# 0.70# 0.53*
IL-6 - - 1.00 0.85# 0.43*
IL-8 - - - 1.00 0.45*
TNFα - - - - 1.00

Table 6

Comparison of lymphocyte MNF in chromate exposure workers"

Group MNF/%, x?±s Ta P OR(95%CI)b P
Total, n=22 1.341±0.588 7.222 <0.001# 1.323
(1.049, 1.669)
0.018*
High exposure group, n=11 1.545±0.584 6.304 <0.001#
Low exposure group, n=11 1.136±0.541 4.295 0.002#

Table 7

Results of multiple liner regression analysis oflung function index FEF25%-75%and cytokines, BMI and other factors"

Varible Β value S value β’ value P value
TNFα -1.754 0.444 -0.622 0.001#
BMI -2.092 1.037 -0.311 0.061
[1] Listed N . Chromium, nickel and welding[J]. IARC Monogr Eval Carcinog Risks Hum, 1990,49:1-648.
[2] Gibb HJ, Lees PS, Wang J , et al. Extended followup of a cohort of chromium production workers[J]. Am J Ind Med, 2015,58(8):905-913.
doi: 10.1002/ajim.v58.8
[3] Salama A, Hegazy R, Hassan A . Intranasal chromium induces acute brain and lung injuries in rats: assessment of different potential hazardous effects of environmental and occupational exposure to chromium and introduction of a novel pharmacological and toxicological animal model[J]. PLoS One, 2016,11(12):e168688.
[4] Yang Y, Liu H, Xiang X H , et al. Outline of occupational chromium poisoning in China[J]. Bull Environ Contam Toxicol, 2013,90(6):742-749.
doi: 10.1007/s00128-013-0998-3
[5] Honda A, Tsuji K, Matsuda Y , et al. Effects of air pollution-related heavy metals on the viability and inflammatory responses of human airway epithelial cells[J]. Int J Toxicol, 2015,34(2):195-203.
doi: 10.1177/1091581815575757
[6] 李苹, 李阳, 张济 , 等. 工作场所可溶性铬酸盐职业接触限值的探讨[J]. 中华预防医学杂志, 2014,48(3):222-224.
[7] Shrivastava R, Upreti RK, Seth PK , et al. Effects of chromium on the immune system[J]. FEMS Immunol Med Microbiol, 2002,34(1):1-7.
doi: 10.1111/fim.2002.34.issue-1
[8] Hu G, Li P, Cui X , et al. Cr(Ⅵ)-induced methylation and down-regulation of DNA repair genes and its association with markers of genetic damage in workers and 16HBE cells[J]. Environ Pollut, 2018,238:833-843.
doi: 10.1016/j.envpol.2018.03.046
[9] Xu J, Zhao M, Pei L , et al. Oxidative stress and DNA damage in a long-term hexavalent chromium-exposed population in North China: a cross-sectional study[J]. BMJ Open, 2018,8(6):e21470.
[10] Azad N, Rojanasakul Y, Vallyathan V . Inflammation and lung cancer: roles of reactive oxygen/nitrogen species[J]. J Toxicol Environ Health B Crit Rev, 2008,11(1):1-15.
doi: 10.1080/10937400701436460
[11] 贾光, 李阳, 于善法 , 等. 职业人群铬酸盐危害新证据及其健康监护建议[C]. 广州: 第6届全国毒理大会, 2013: 1.
[12] GBZ2.2-2007, 工作场所有害因素职业接触限值第二部分[S].
[13] Thomas P, Fenech M . Cytokinesis-block micronucleus cytome assay in lymphocytes[J]. Methods Mol Biol, 2011,682(5):217-234.
doi: 10.1007/978-1-60327-409-8
[14] Qian Q, Li P, Wang T , et al. Alteration of Th1/Th2/Th17 cytokine profile and humoralimmune responses associated with chromate exposure[J]. Occup Environ Med, 2013,70(10):697-702.
doi: 10.1136/oemed-2013-101421
[15] 滕晶晶 . 中国一般人群外周血淋巴细胞胞质分裂阻滞法微核率基准值研究[D]. 北京: 中国疾病预防控制中心, 2016.
[16] Li P, Gu Y, Yu S , et al. Assessing the suitability of 8-OHdG and micronuclei as genotoxic biomarkers in chromate-exposed workers: a cross-sectional study[J]. BMJ Open, 2014,4(10):e5979.
[17] 杜仙梅, 张济, 马衍辉 , 等. 呼吸系统损伤与铬盐职业接触水平评价指标间的相关性研究[J]. 中国职业医学, 2009,36(2):91-94.
[18] 李阳, 贾光 . 用职业暴露矩阵综合分析环境暴露评价和生物暴露评价: 以职业性铬酸盐接触为例[C]. 山东泰安: 第十三次全国劳动卫生与职业病学术会议, 2014: 52-61.
[19] 丁春光, 潘亚娟, 张爱华 , 等. 2009-2010年我国一般人群全血和尿液中铬水平分布[J]. 中华预防医学杂志, 2012,46(8):679-682.
[20] 巴特, 顾永恩, 余善法 , 等. 铬酸盐接触工人肺通气功能的动态观察[J]. 北京大学学报(医学版), 2012,44(3):444-447.
[21] Li P, Li Y, Zhang J , et al. Biomarkers for lung epithelium injury in occupational hexavalent chromium-exposed workers[J]. J Occup Environ Med, 2015,57(4):e45-e50.
doi: 10.1097/JOM.0000000000000436
[22] Chandrasekaran V, Dilara K, Padmavathi R . Pulmonary functions in tannery workers: a cross sectional study[J]. Indian J Physiol Pharmacol, 2014,58(3):206-210.
[23] 于素芳, 于素芝, 周克昌 , 等. 铬酸盐生产工人肺功能配对分析[J]. 中国公共卫生, 1997,13(4):46.
[24] Katiyar S, Awasthi SK, Sahu RK . Suppression of IL-6 level in human peripheral blood mononuclear cells stimulated with PHA/LPS after occupational exposure to chromium[J]. Sci Total Environ, 2008,390(2/3):355-361.
doi: 10.1016/j.scitotenv.2007.10.031
[25] 许艳丹 . 氯乙烯作业工人遗传损伤与免疫功能的关系[D]. 上海: 复旦大学, 2013.
[26] Ring A, Stremmel W . The hepatic microvascular responses to sepsis[J]. Semin Thromb Hemost, 2000,26(5):589-594.
doi: 10.1055/s-2000-13215
[27] Peters MC, Mcgrath KW, Hawkins GA , et al. Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts[J]. Lancet Respir Med, 2016,4(7):574-584.
doi: 10.1016/S2213-2600(16)30048-0
[28] 尹德刚 . 白细胞介素8在肺腺癌中的异常表达及其临床意义[D]. 杭州: 浙江大学, 2015.
[29] 戴春 . 血清中炎症相关细胞因子与非小细胞肺癌关系的研究[D]. 昆明: 昆明医科大学, 2015.
[30] Bruno M, Ross J, Ge Y . Proteomic responses of BEAS-2B cells to nontoxic and toxic chromium: Protein indicators of cytotoxicity conversion[J]. Toxicol Lett, 2016,264:59-70.
doi: 10.1016/j.toxlet.2016.08.025
[31] Wilbur S, Abadin H, Fay M , et al. Toxicological profile for chromium[M]. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US), 2012: 96-98.
[32] Proctor DM, Suh M, Campleman SL , et al. Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures[J]. Toxicology, 2014,325(6):160-179.
doi: 10.1016/j.tox.2014.08.009
[33] Beaver LM, Stemmy EJ, Schwartz AM , et al. Lung inflammation, injury, and proliferative response after repetitive particulate hexavalent chromium exposure[J]. Environ Health Perspect, 2009,117(12):1896-1902.
doi: 10.1289/ehp.0900715
[34] Pratheeshkumar P, Son YO, Divya SP , et al. Luteolin inhibits Cr(Ⅵ)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways[J]. Toxicol Appl Pharmacol, 2014,281(2):230-241.
doi: 10.1016/j.taap.2014.10.008
[35] Barnes TC, Anderson ME, Moots RJ . The many faces of interleukin-6: the role of IL-6 in inflammation, vasculopathy, and fibrosis in systemic sclerosis[J/OL]. Int J Rheumatol, .
[36] 赵博, 安晓琴, 蒋轶文 , 等. 异氰酸酯作业工人诱导痰炎性细胞及血清IL-8和IL-1β水平的变化[J]. 中国医科大学学报, 2014,43(12):1117-1120.
[37] Bonassi S, El-Zein R, Bolognesi C , et al. Micronuclei frequency in peripheral blood lymphocytes and cancer risk: evidence from human studies[J]. Mutagenesis, 2011,26(1):93-100.
doi: 10.1093/mutage/geq075
[38] Vodicka P, Musak L, Fiorito G , et al. DNA and chromosomal damage in medical workers exposed to anaesthetic gases assessed by the lymphocyte cytokinesis-block micronucleus (CBMN) assay. A critical review[J]. Mutat Res, 2016,770(Pt A):26-34.
doi: 10.1016/j.mrrev.2016.04.003
[39] Xiaohua L, Yanshuang S, Li W , et al. Evaluation of the correlation between genetic damage and occupational chromate exposure through BNMN frequencies[J]. J Occup Environ Med, 2012,54(2):166-170.
doi: 10.1097/JOM.0b013e31823d86b4
[1] Jiajun LIU, Guokang LIU, Yuhu ZHU. Immune-related severe pneumonia: A case report [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 932-937.
[2] Fu-zheng GUO,Xiu-juan ZHAO,Jiu-xu DENG,Zhe DU,Tian-bing WANG,Feng-xue ZHU. Early changes within the lymphocyte population are associated with the long term prognosis in severely injured patients [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 552-556.
[3] YANG Duo,ZHOU Xin-na,WANG Shuo,WANG Xiao-li,YUAN Yan-hua,YANG Hua-bin,GENG Hui-zhen,PENG Bing,LI Zi-bo,LI Bin,REN Jun. Assessment of lymphocytic function in vitro stimulated by specific tumor polypeptide combined with dendritic cells [J]. Journal of Peking University (Health Sciences), 2021, 53(6): 1094-1098.
[4] Jia-hui CHEN,Da-yu HU,Xu JIA,Wei NIU,Fu-rong DENG,Xin-biao GUO. Monitoring metrics for short-term exposure to ambient ozone and pulmonary function and airway inflammation in healthy young adults [J]. Journal of Peking University (Health Sciences), 2020, 52(3): 492-499.
[5] DOU Jing-li,BAI Li,PANG Chun-yan,ZHANG Wen-lan,ZHANG Wei,WANG Yong-fu. Therapeutic effect of adipose tissue-derived stem cells on bleomycin-induced mice of scleroderma [J]. Journal of Peking University(Health Sciences), 2016, 48(6): 970-976.
[6] AN Le-mei, LI Juan, JI Lan-lan, LI Guang-tao, ZHANG Zhuo-li. Detection of peripheral follicular helper T cells in rheumatoid arthritis [J]. Journal of Peking University(Health Sciences), 2016, 48(6): 951-957.
[7] WANG Zhi-hua, ZHANG Wei, ZHANG Yan-qing, PANG Chun-yan,WANG Yong-fu. Effect of CD40 siRNA on inflammatory response of MRL/Lpr mice [J]. Journal of Peking University(Health Sciences), 2016, 48(5): 771-776.
[8] ZHU Zhen-jie, XU Qing-quan, HUANG Xiao-bo, HONG Yang, YANG Qing-ya, WANG Shu, AN Li-zhe, XU Tao. Risk factor analysis of systemic inflammatory response syndrome in type 2 diabetics after percutaneous nephrolithotomy [J]. Journal of Peking University(Health Sciences), 2016, 48(4): 643-649.
[9] LI Hao, ZHANG You-Yi.
Roles of proinflammatory cytokines in cardiac remodeling induced by sympathetic nervous system /catecholamine
[J]. Journal of Peking University(Health Sciences), 2014, 46(6): 1001-1004.
[10] CHEN Liang, LI Jian-Xing, HUANG Xiao-Bo, WANG Xiao-Feng. Analysis for risk factors of systemic inflammatory response syndrome after onephase treatment for apyrexic calculous pyonephrosis by percutaneous  nephrolithotomy [J]. Journal of Peking University(Health Sciences), 2014, 46(4): 566-569.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!