Journal of Peking University(Health Sciences) ›› 2019, Vol. 51 ›› Issue (2): 315-320. doi: 10.19723/j.issn.1671-167X.2019.02.022

Previous Articles     Next Articles

Effect of different plasma treated zirconia on the adhensive behaviour of human gingival fibroblasts

Miao ZHENG1,Ling-lu ZHAN2,Zhi-qiang LIU3,4,He-ping LI3,(),Jian-guo TAN2,()   

  1. 1. Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
    2. Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
    3. Department of Engineering Phy-sics, Tsinghua University, Beijing 100084, China
    4. College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
  • Received:2018-10-09 Online:2019-04-18 Published:2019-04-26
  • Contact: He-ping LI,Jian-guo TAN E-mail:liheping@tsinghua.edu.cn;kqtanjg@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(81801013)

RICH HTML

11   

Abstract:

Objective: To evaluate the effect of different cold atmospheric plasma (CAP) treatment on the surface chemical and physical properties of zirconia and adhensive behaviour of human gingival fibroblasts (HGFs) cultured on zirconia disks.Methods: The zirconia disks were divided into four groups and treated using helium, argon and mixture of argon and oxygen cold atmospheric plasma for 90 s or left untreated. The surface morphology, wettability and chemical elements were analyzed right after treatment. Human gingival fibroblasts were grown from biopsies obtained from a periodontally healthy human subject during periodontal surgery. HGFs were seeded on zirconia disk, and cells density was measured at the time point of 3 hours. Indirect immunofluorescence (IIF) was performed for morphometric examination at the time point of 3 hours.Results: The crystallographic structure of zirconia was analyzed pre-viously and the results suggested that it fitted the properties of zirconium yttrium oxide. After helium, argon and mixture of argon and oxygen cold atmospheric plasma treatment, the surface morphology and roughness of zirconia disks remained the same. The contact angle of zirconia decreased significantly(P<0.05)after CAP treatment: from 68.38° to 17.90°. After different CAP plasmas treatment, the atomic percentage of carbon on the outermost surface of the three groups decreased, as did the surface C/O ratio. The surface C/O ratio of zirconia decreased from 1.07 to 0.33. Fibroblasts density increased on CAP treated disks, especially the ones treated by mixture of argon and oxygen CAP(P<0.05). Cells of the three CAP plasma treatment groups spread better and had more protrusions, as well as larger surficial areas.Conclusion: Based on the results of this study after being treated by different kinds of CAP plasmas for 90 s, the surface wettability increased and the elements changed significantly with no changes in the tomography and roughness of the materials. The CAP treatment enhances the adhensive behavior of fibroblasts on zirconia by increasing the oxygen functional groups and promoting the cell density. Wettability of zirconia, an important physicochemical property, has a vital influence on the cell behaviors.

Key words: Zirconia, Cold atmospheric plasma, Fibroblasts, gingival, human

CLC Number: 

  • R783.3

Figure 1

Picture of the CAP Med generator"

Figure 2

Surface topography observations of the zirconia disks by SEM (×2 500) A,control group; B,He group."

Table 1

Atomic percentage of C and O on four surfaces"

Items C/% O/% C/O
He group 23.55 52.63 0.45
Ar group 18.72 52.47 0.36
Ar+O2 group 17.15 52.17 0.33
Control 39.63 37.09 1.07

Figure 3

Quantitative measurements of the HGFs on the control and CAP plasma treatment surfaces, cell attachment after culturing for 3 h Data are shown as mean ± SD (n = 15). * P < 0.05, vs. Ar group; # P < 0.05, vs. control group. CCK-8, cell counting kit-8."

Figure 4

Confocal laser scanning microscopy observations of the human gingival fibroblasts on the control and plasma treatment surfaces A, E, the helium cold atmospheric plasma treatment for 90 s; B, F, the argon cold atmospheric plasma treatment for 90 s; C, G, the mixture argon and oxygen cold atmospheric plasma treatment for 90 s; D,H, no atmospheric plasma treatment treatment as controls. Cell immunofluorescence staining,A-D, magnification is ×10, E-H, magnification is ×40."

[1] Kawahara H, Kawahara D, Hashimoto K , et al. Morphologic stu-dies on the biologic seal of titanium dental implants. Report Ⅰ. In vitro study on the epithelialization mechanism around the dental implant[J]. Int J Oral Maxillofac Implants, 1998,13(4):457-464.
[2] Schwarz F, Derks J, Monje A , et al. Peri-implantitis[J]. J Periodontol, 2018,89(Suppl 1):S267-S290.
doi: 10.1002/JPER.16-0350
[3] Kim YS, Shin SY, Moon SK , et al. Surface properties correlated with the human gingival fibroblasts attachment on various materials for implant abutments: a multiple regression analysis[J]. Acta Odontol Scand, 2015,73(1):38-47.
doi: 10.3109/00016357.2014.949845
[4] Kim JH, Lee MA, Han GJ , et al. Plasma in dentistry: a review of basic concepts and applications in dentistry[J]. Acta Odontol Scand, 2014,72(1):1-12.
doi: 10.3109/00016357.2013.795660
[5] Zheng M, Yang Y, Liu XQ , et al. Enhanced biological behavior of in vitro human gingival fibroblasts on cold plasma-treated zirconia[J]. PLoS One, 2015,10:e0140278.
doi: 10.1371/journal.pone.0140278
[6] Yin L, Nakanishi Y, Alao AR , et al. A review of engineered zirconia surfaces in biomedical applications[J]. Procedia CIRP, 2017,65:284-290.
doi: 10.1016/j.procir.2017.04.057
[7] Rigolin MSM, de Avila ED, Basso FG , et al. Effect of different implant abutment surfaces on OBA-09 epithelial cell adhesion[J]. Microsc Res Tech, 2017,80(12):1304-1309.
doi: 10.1002/jemt.22941
[8] Abrahamsson I, Zitzmann NU, Berglundh T , et al. The mucosal attachment to titanium implants with different surface characteristics: an experimental study in dogs[J]. J Clin Periodontol, 2002,29(5):448-455.
doi: 10.1034/j.1600-051X.2002.290510.x
[9] Schwarz F, Herten M, Sager M , et al. Histological and immunohistochemical analysis of initial and early subepithelial connective tissue attachment at chemically modified and conventional SLA titanium implants. A pilot study in dogs[J]. Clin Oral Investig, 2007,11(3):245-255.
doi: 10.1007/s00784-007-0110-7
[10] Schwarz F, Mihatovic I, Becker J , et al. Histological evaluation of different abutments in the posterior maxilla and mandible: an experimental study in humans[J]. J Clin Periodontol, 2013,40(8):807-815.
doi: 10.1111/jcpe.2013.40.issue-8
[11] Canullo L, Genova T, Wang HL , et al. Plasma of argon increases cell attachment and bacterial decontamination on different implant surfaces[J]. Int J Oral Maxillofac Implants, 2017,32(6):1315-1323.
doi: 10.11607/jomi.5777
[12] Yang Y, Zhou J, Liu X , et al. Ultraviolet light-treated zirconia with different roughness affects function of human gingival fibroblasts in vitro: the potential surface modification developed from implant to abutment[J]. J Biomed Mater Res B Appl Biomater, 2015,103(1):116-124.
doi: 10.1002/jbm.b.v103.1
[13] Hoshi N, Negishi H, Okada S , et al. Response of human fibroblasts to implant surface coated with titanium dioxide photocatalytic films[J]. J Prosthodont Res, 2010,54(4):185-191.
doi: 10.1016/j.jpor.2010.04.005
[14] An N, Rausch-fan X, Wieland M , et al. Initial attachment, subsequent cell proliferation/viability and gene expression of epithelial cells related to attachment and wound healing in response to dif-ferent titanium surfaces[J]. Dent Mater, 2012,28(12):1207-1214.
doi: 10.1016/j.dental.2012.08.007
[15] Canullo L, Genova T, Tallarico M , et al. Plasma of argon affects the earliest biological response of different implant surfaces: an in vitro comparative study[J]. J Dent Res, 2016,95(5):566-573.
doi: 10.1177/0022034516629119
[1] Shan HE,Xin CHEN,Qi CHENG,Lingjiang ZHU,Peiyu ZHANG,Shuting TONG,Jing XUE,Yan DU. Tofacitinib inhibits the transformation of lung fibroblasts into myofibroblasts through JAK/STAT3 pathway [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 505-511.
[2] Yuru HU,Juan LIU,Wenjing LI,Yibing ZHAO,Qiqiang LI,Ruifang LU,Huanxin MENG. Relationship between short-chain fatty acids in the gingival crevicular fluid and periodontitis of stage Ⅲ or Ⅳ [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 332-337.
[3] Jiayun DONG,Xuefen LI,Ruifang LU,Wenjie HU,Huanxin MENG. Histopathological characteristics of peri-implant soft tissue in reconstructed jaws with vascularized bone flaps [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 25-31.
[4] Yuan PAN,Hang GU,Han XIAO,Lijun ZHAO,Yiman TANG,Wenshu GE. Ubiquitin-specific protease 42 regulates osteogenic differentiation of human adipose-derived stem cells [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 9-16.
[5] Han LU,Jian-yun ZHANG,Rong YANG,Le XU,Qing-xiang LI,Yu-xing GUO,Chuan-bin GUO. Clinical factors affecting the prognosis of lower gingival squamous cell carcinoma [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 702-707.
[6] Qian DING,Wen-jin LI,Feng-bo SUN,Jing-hua GU,Yuan-hua LIN,Lei ZHANG. Effects of surface treatment on the phase and fracture strength of yttria- and magnesia-stabilized zirconia implants [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 721-728.
[7] Xiao-juan ZHU,Hong ZHANG,Shuang ZHANG,Dong LI,Xin LI,Ling XU,Ting LI. Clinicopathological features and prognosis of breast cancer with human epidermal growth factor receptor 2 low expression [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 243-253.
[8] Fei SUN,Jian LIU,Si-qi LI,Yi-ping WEI,Wen-jie HU,Cui WANG. Profiles and differences of submucosal microbial in peri-implantitis and health implants: A cross-sectional study [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 30-37.
[9] Wei-wei LI,Hu CHEN,Yong WANG,Yu-chun SUN. Research on friction and wear behaviors of silicon-lithium spray coating on zirconia ceramics [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 94-100.
[10] Yue WANG,Shuang ZHANG,Hong ZHANG,Li LIANG,Ling XU,Yuan-jia CHENG,Xue-ning DUAN,Yin-hua LIU,Ting LI. Clinicopathological features and prognosis of hormone receptor-positive/human epidermal growth factor receptor 2-negative breast cancer [J]. Journal of Peking University (Health Sciences), 2022, 54(5): 853-862.
[11] Jin-feng JIA,Fei LIANG,Jian-wei HUANG,Hao WANG,Pu-qing HAN. Effect of artificial liver with double plasma molecular absorb system model on patients' platelets and corresponding treatment strategy [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 548-551.
[12] LI Jia,XU Yu,WANG You-ya,GAO Zhan-cheng. Clinical characteristics of influenza pneumonia in the elderly and relationship between D-dimer and disease severity [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 153-160.
[13] YUAN Lin-tian,MA Li-sha,LIU Run-yuan,QI wei,ZHANG Lu-dan,WANG Gui-yan,WANG Yu-guang. Computer simulation of molecular docking between methylene blue and some proteins of Porphyromonas gingivalis [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 23-30.
[14] WANG Zheng,DING Qian,GAO Yuan,MA Quan-quan,ZHANG Lei,GE Xi-yuan,SUN Yu-chun,XIE Qiu-fei. Effect of porous zirconia ceramics on proliferation and differentiation of osteoblasts [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 31-39.
[15] ZHOU Chuan-xiang,ZHOU Zheng,ZHANG Ye,LIU Xiao-xiao,GAO Yan. Clinicopathological study in 28 cases of oral basaloid squamous cell carcinomas [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 62-67.
Viewed
Full text
168
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 11 0 0 157

  From Others local
  Times 15 153
  Rate 9% 91%

Abstract
866
Just accepted Online first Issue
0 0 866
  From Others local
  Times 863 3
  Rate 100% 0%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!