Journal of Peking University(Health Sciences) ›› 2019, Vol. 51 ›› Issue (4): 653-659. doi: 10.19723/j.issn.1671-167X.2019.04.010
Previous Articles Next Articles
Xue-hua ZHU1,Ming-yu YANG2,Hai-zhui XIA1,Wei HE1,Zhi-ying ZHANG1,Yu-qing LIU1,△(),Chun-lei XIAO1,△(),Lu-lin MA1,Jian LU1
CLC Number:
[1] | Zeng G, Mai Z, Xia S , et al. Prevalence of kidney stones in China: an ultrasonography based cross-sectional study[J]. BJU Int, 2017,120(1):109-116. |
[2] | Sanguedolce F, Bozzini G, Chew B , et al. The evolving role of retrograde intrarenal surgery in the treatment of urolithiasis[J]. Eur Urol Focus, 2017,3(1):46-55. |
[3] | Berardinelli F, Proietti S, Cindolo L , et al. A prospective multicenter European study on flexible ureterorenoscopy for the management of renal stone[J]. Int Braz J Urol, 2016,42(3):479-486. |
[4] | 杨波, 胡卫国, 胡浩 , 等. 逆行肾内手术治疗肾结石失败的原因分析及其对策[J]. 北京大学学报(医学版), 2014,46(5):794-797. |
[5] | Resorlu B, Unsal A, Gulec H , et al. A new scoring system for predicting stone-free rate after retrograde intrarenal surgery: the “resorlu-unsal stone score”[J]. Urology, 2012,80(3):512-518. |
[6] | Jung JW, Lee BK, Park YH , et al. Modified Seoul National University Renal Stone Complexity score for retrograde intrarenal surgery[J]. Urolithiasis, 2014,42(4):335-340. |
[7] | Ito H, Sakamaki K, Kawahara T , et al. Development and internal validation of a nomogram for predicting stone-free status after flexible ureteroscopy for renal stones[J]. BJU Int, 2015,115(3):446-451. |
[8] | Xiao YL, Li D, Chen L , et al. The R.I.R.S. scoring system: An innovative scoring system for predicting stone-free rate following retrograde intrarenal surgery[J]. BMC Urol, 2017,17(1):105. |
[9] | Breiman L . Random forests[J]. Mach Learn, 2001,45(1):5-32. |
[10] | Chen T, Guestrin C. XGboost: A scalable tree boosting system. Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining [C]. San Francisco, California, USA, 2016: 785-794. |
[11] | Mei X, Wang R, Yang W , et al. Predicting malignancy of pulmonary ground-glass nodules and their invasiveness by random forest[J]. J Thorac Dis, 2018,10(1):458-463. |
[12] | Taylor RA, Moore CL, Cheung KH , et al. Predicting urinary tract infection in the emergency department with machine learning[J]. PLoS One, 2018,13(3):e0194085. |
[13] | 刘可, 肖春雷, 刘余庆 , 等. 标准化技术输尿管软镜钬激光碎石术治疗输尿管近端及肾结石:单中心140例报告[J]. 中国微创外科杂志, 2015,15(12):1065-1068, 1087. |
[14] | Ghani KR, Wolf JS Jr . What is the stone-free rate following flexible ureteroscopy for kidney stones?[J]. Nat Rev Urol, 2015,12(5):281-288. |
[15] | Ito H, Kawahara T, Terao H , et al. The most reliable preoperative assessment of renal stone burden as a predictor of stone-free status after flexible ureteroscopy with holmium laser lithotripsy: a single-center experience[J]. Urology, 2012,80(3):524-528. |
[16] | Resorlu B, Oguz U, Resorlu EB , et al. The impact of pelvica-liceal anatomy on the success of retrograde intrarenal surgery in patients with lower pole renal stone[J]. Urology, 2012,79(1):61-66. |
[17] |
曹文哲, 应俊, 陈广飞 , 等. 基于Logistic回归和随机森林算法的2型糖尿病并发视网膜病变风险预测及对比研究[J]. 中国医疗设备, 2016,31(3):33-38, 69.
doi: 10.3969/j.issn.1674-1633.2016.03.006 |
[18] | Kang SK, Cho KS, Kang DH , et al. Systematic review and meta-analysis to compare success rate of retrograde intrarenal surgery versus percutaneous nephrolithotomy for renal stones >2 cm: An update[J]. Medicine (Baltimore), 2017,96(49):e9119. |
[19] | Inoue T, Murota T, Okada S , et al. Influence of pelvicaliceal anatomy on stone clearance after flexible ureteroscopy and holmium laser lithotripsy for large renal stones[J]. J Eudourol, 2015,29(9):998-1005. |
[20] | Sari S, Ozok Hu, Topaloglu H , et al. The association of a number of anatomical factors with the success of retrograde intrarenal surgery in lower calyceal stones[J]. Urol J, 2017,14(4):4008-4014. |
[21] | 王训师 . XGBoost机器学习模型在缺血性卒中后早期认知损害诊断中的应用研究[D]. 杭州:浙江大学, 2018. |
[22] | Jessen JP, Honeck P, Knoll T , et al. Flexible ureterorenoscopy for lower pole stones: influence of the collecting system’s anatomy[J]. J Endourol, 2014,28(2):146-151. |
[23] | Nicodemus KK, Malley JD, Strobl C , et al. The behavior of random forest permutation-based variable importance measures under predictor correlation[J]. BMC Bioinformatics, 2010,11:110. |
[1] | Hailong HE,Qing LI,Tao XU,Xiaowei ZHANG. Construction of a predictive model for postoperative pain relief after microscopic spermatic cord surgery for spermatic cord pain [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 646-655. |
[2] | WU Jing-yi,LIN Yu,LIN Ke,HU Yong-hua,KONG Gui-lan. Predicting prolonged length of intensive care unit stay via machine learning [J]. Journal of Peking University (Health Sciences), 2021, 53(6): 1163-1170. |
[3] | LIN Yu,WU Jing-yi,LIN Ke,HU Yong-hua,KONG Gui-lan. Prediction of intensive care unit readmission for critically ill patients based on ensemble learning [J]. Journal of Peking University (Health Sciences), 2021, 53(3): 566-572. |
|