Journal of Peking University (Health Sciences) ›› 2020, Vol. 52 ›› Issue (5): 815-820. doi: 10.19723/j.issn.1671-167X.2020.05.004

Previous Articles     Next Articles

Evaluating the effect of WNT pathway genes considering interactions on the risk of non-syndromic oral clefts among Chinese populations

Meng-ying WANG1,Wen-yong LI1,Ren ZHOU1,Si-yue WANG1,Dong-jing LIU1,Hong-chen ZHENG1,Jing LI2,Nan LI3,Zhi-bo ZHOU3,Hong-ping ZHU3,Tao WU1,(),Yong-hua HU1   

  1. 1. Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
    2. Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    3. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
  • Received:2018-07-10 Online:2020-10-18 Published:2020-10-15
  • Contact: Tao WU E-mail:twu@bjmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(81102178);National Natural Science Foundation of China(81573225);Beijing Municipal Natural Science Foundation(7172115)

RICH HTML

  

Abstract:

Objective: In this study, we used genome-wide association study (GWAS) data to explore whether WNT pathway genes were associated with non-syndromic oral clefts (NSOC) considering gene-gene interaction and gene-environment interaction. Methods: We conducted the analysis using 806 non-syndromic cleft lip with or without cleft palate (NSCL/P) case-parent trios and 202 non-syndromic cleft palate (NSCP) case-parent trios among Chinese populations selected from an international consortium established for a GWAS of non-syndromic oral clefts. Genotype data and maternal environmental exposures were collected through DNA samples and questionnaires. Conditional Logistic regression models were adopted to explore gene-gene interaction and gene-environment interaction using trio package in R software. The threshold of significance level was set as 3.47×10-4 using Bonferroni correction. Results: A total of 144 single nucleotide polymorphisms (SNPs) in seven genes passed the quality control process in NSCL/P trios and NSCP trios, respectively. Totally six pairs of SNPs interactions showed statistically significant SNP-SNP interaction (P<3.47×10-4) after Bonferroni correction, which were rs7618735 (WNT5A) and rs10848543 (WNT5B), rs631948 (WNT11) and rs556874 (WNT5A), and rs631948 (WNT11) and rs472631 (WNT5A) among NSCL/P trios; rs589149 (WNT11) and rs4765834 (WNT5B), rs1402704 (WNT11) and rs358792 (WNT5A), and rs1402704 (WNT11) and rs358793 (WNT5A) among NSCP trios, respectively. In addition, no significant result was found for gene-environment interaction analysis in both of the NSCL/P trios and NSCP trios. Conclusion: Though this study failed to detect significant association based on gene-environment interactions of seven WNT pathway genes and the risk of NSOC, WNT pathway genes may influence the risk of NSOC through potential gene-gene interaction.

Key words: Non-syndromic oral clefts, Genome-wide association studies, WNT signaling pathway

CLC Number: 

  • R181.33

Table 1

The distribution of NSOC trios in China"

Site Male Female Total
CL/P CP CL/P CP
Taiwan 139 29 94 50 312
Shandong 193 16 81 22 312
Hubei 132 19 55 26 232
Sichuan 75 18 37 22 152
Total 539 82 267 120 1 008

Table 2

Information of the seven genes in the WNT pathway"

Subtypes Gene Chromosome Number of SNPs
NSCL/P WNT3 17 7
WNT3A 1 8
WNT5A 3 45
WNT5B 12 28
WNT9A 1 13
WNT9B 17 9
WNT11 11 34
Total 144
NSCP WNT3 17 7
WNT3A 1 7
WNT5A 3 46
WNT5B 12 28
WNT9A 1 13
WNT9B 17 9
WNT11 11 34
Total 144

Table 3

The results of gene-gene interaction analysis"

Subtypes Gene1 SNP1 MAF1 P1 Gene2 SNP2 MAF2 P2 Pinteraction RR Empirical P
NSCL/P WNT5A rs7618735 0.153 0.250 WNT5B rs10848543 0.268 0.355 2.66×10-4 1.01 2.00×10-4
WNT11 rs631948 0.360 0.601 WNT5A rs556874 0.318 0.540 3.10×10-4 1.06 3.00×10-4
WNT11 rs631948 0.360 0.601 WNT5A rs472631 0.321 0.441 3.42×10-4 1.07 4.00×10-4
NSCP WNT11 rs589149 0.444 0.940 WNT5B rs4765834 0.306 0.153 1.08×10-4 1.19 1.00×10-4
WNT11 rs1402704 0.434 0.178 WNT5A rs358792 0.273 0.502 1.37×10-4 1.10 1.00×10-4
WNT11 rs1402704 0.434 0.178 WNT5A rs358793 0.275 0.452 1.71×10-3 1.56 1.00×10-4
[1] Cooper ME, Ratay JS, Marazita ML. Asian oral-facial cleft birth prevalence[J]. Cleft Palate Craniofac J, 2006,43(5):580-589.
doi: 10.1597/05-167 pmid: 16986997
[2] Wang M, Yuan Y, Wang Z, et al. Prevalence of orofacial clefts among live births in China: A systematic review and meta-analysis[J]. Birth Defects Res, 2017,109(13):1011-1019.
pmid: 28635078
[3] Leslie EJ, Marazita ML. Genetics of cleft lip and cleft palate[J]. Am J Med Genet C Semin Med Genet, 2013,163C(4):246-258.
doi: 10.1002/ajmg.c.31381 pmid: 24124047
[4] Mangold E, Ludwig KU, Nothen MM, Breakthroughs in the gene-tics of orofacial clefting[J]. Trends Mol Med, 2011,17(12):725-733.
doi: 10.1016/j.molmed.2011.07.007 pmid: 21885341
[5] Beaty TH, Marazita ML, Leslie EJ. Genetic factors influencing risk to orofacial clefts: Today’s challenges and tomorrow’s opportunities[J]. F1000Res, 2016,5:2800.
doi: 10.12688/f1000research.9503.1 pmid: 27990279
[6] Leslie EJ, Carlson JC, Shaffer JR, et al. Association studies of low-frequency coding variants in nonsyndromic cleft lip with or without cleft palate[J]. Am J Med Genet A, 2017,173(6):1531-1538.
doi: 10.1002/ajmg.a.38210 pmid: 28425186
[7] Mani P, Jarrell A, Myers J, et al. Visualizing canonical Wnt signaling during mouse craniofacial development[J]. Dev Dyn, 2010,239(1):354-363.
doi: 10.1002/dvdy.22072 pmid: 19718763
[8] Lan Y, Ryan R, Zhang Z, et al. Expression of Wnt9b and activation of canonical Wnt signaling during midfacial morphogenesis in mice[J]. Dev Dyn, 2006,235(5):1448-1454.
doi: 10.1002/dvdy.20723 pmid: 16496313
[9] Chiquet BT, Blanton SH, Burt A, et al. Variation in WNT genes is associated with nonsyndromic cleft lip with or without cleft palate[J]. Hum Mol Genet, 2008,17(14):2212-2218.
doi: 10.1093/hmg/ddn121 pmid: 18413325
[10] Menezes R, Letra A, Kim AH, et al. Studies with Wnt genes and nonsyndromic cleft lip and palate[J]. Birth Defects Res A Clin Mol Teratol, 2010,88(11):995-1000.
doi: 10.1002/bdra.20720 pmid: 20890934
[11] 刘小俊, 周小平, 崔毓贵, 等. WNT5A基因rs566926多态性与中国苏皖地区部分人群非综合征性唇腭裂的相关性[J]. 江苏医药, 2010,36(13):1495-1498.
[12] Yao T, Yang L, Li PQ, et al. Association of Wnt3A gene variants with non-syndromic cleft lip with or without cleft palate in Chinese population[J]. Arch Oral Biol, 2011,56(1):73-78.
doi: 10.1016/j.archoralbio.2010.09.002
[13] Beaty TH, Murray JC, Marazita ML, et al. A genome-wide asso-ciation study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010,42(6):525-529.
doi: 10.1038/ng.580 pmid: 20436469
[14] Beaty TH, Ruczinski I, Murray JC, et al. Evidence for gene-environment interaction in a genome wide study of isolated, non-syndromic cleft palate[J]. Genet Epidemiol, 2011,35(6):469-478.
doi: 10.1002/gepi.20595
[15] Cordell HJ. Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in humans[J]. Hum Mol Genet, 2002,11(20):2463-2468.
doi: 10.1093/hmg/11.20.2463 pmid: 12351582
[16] Christensen K, Juel K, Herskind AM, et al. Long term follow up study of survival associated with cleft lip and palate at birth[J]. BMJ, 2004,328(7453):1405-1408.
doi: 10.1136/bmj.38106.559120.7C pmid: 15145797
[17] Zhu JL, Basso O, Hasle H, et al. Do parents of children with congenital malformations have a higher cancer risk? A nationwide study in Denmark[J]. Br J Cancer, 2002,87(5):524-528.
doi: 10.1038/sj.bjc.6600488 pmid: 12189550
[18] Mangold E, Ludwig KU, Birnbaum S, et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate[J]. Nat Genet, 2010,42(1):24-26.
doi: 10.1038/ng.506 pmid: 20023658
[19] Birnbaum S, Ludwig KU, Reutter H, et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24[J]. Nat Genet, 2009,41(4):473-477.
doi: 10.1038/ng.333 pmid: 19270707
[20] Grant SF, Wang K, Zhang H, et al. A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24[J]. J Pediatr, 2009,155(6):909-913.
doi: 10.1016/j.jpeds.2009.06.020 pmid: 19656524
[21] Sun Y, Huang Y, Yin A, et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate[J]. Nat Commun, 2015(6):6414.
[22] Leslie EJ, Carlson JC, Shaffer JR, et al. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13[J]. Hum Mol Genet, 2016,25(13):2862-2872.
doi: 10.1093/hmg/ddw104 pmid: 27033726
[23] Yu Y, Zuo X, He M, et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic hete-rogeneity[J]. Nat Commun, 2017(8):14364.
[24] Xiao Y, Taub MA, Ruczinski I, et al. Evidence for SNP-SNP interaction identified through targeted sequencing of cleft case-parent trios[J]. Genet Epidemiol, 2017,41(3):244-250.
doi: 10.1002/gepi.22023 pmid: 28019042
[25] Li Q, Kim Y, Suktitipat B, et al. Gene-gene interaction among Wnt genes for oral cleft in trios[J]. Genet Epidemiol, 2015,39(5):385-394.
doi: 10.1002/gepi.21888 pmid: 25663376
[26] Letra A, Fakhouri W, Fonseca RF, et al. Interaction between IRF6 and TGFA genes contribute to the risk of nonsyndromic cleft lip/palate[J]. PLoS One, 2012,7(9):e45441.
doi: 10.1371/journal.pone.0045441 pmid: 23029012
[27] 张玉. TGFα、Wnt3基因多态性和环境因素的交互作用与非综合征型唇腭裂的关系研究[D]. 武汉: 华中科技大学, 2013.
[28] 俞辉明, 程宏宇, 房进. 环境暴露和FGF18、WNT5A基因多态性与NSCL/P的关系[J]. 广东医学, 2011,32(5):588-590.
[1] Meng-ying WANG,Wen-yong LI,Ren ZHOU,Si-yue WANG,Dong-jing LIU,Hong-chen ZHENG,Zhi-bo ZHOU,Hong-ping ZHU,Tao WU,Yong-hua HU. Association study between haplotypes of WNT signaling pathway genes and nonsyndromic oral clefts among Chinese Han populations [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 394-399.
[2] GUO Zi-ning, LIANG Zhi-sheng, ZHOU Yi, ZHANG Na, HUANG Jie. Genetic study of cardiovascular disease subtypes defined by International Classification of Diseases [J]. Journal of Peking University (Health Sciences), 2021, 53(3): 453-459.
[3] Ren ZHOU,Hong-chen ZHENG,Wen-yong LI,Meng-ying WANG,Si-yue WANG,Nan LI,Jing LI,Zhi-bo ZHOU,Tao WU,Hong-ping ZHU. Exploring the association between SPRY gene family and non-syndromic oral clefts among Chinese populations using data of a next-generation sequencing study [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 564-570.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!